判断该时许逻辑电路中主循环外的无效状态能否进入主循环中。
数字电子技术基础中的自启动:数字电路中的状态机在上电时,无论它处于什么初始状态,都会自动经过有限次的跳变后,最终进入设定的状态中。具有这种功能的电路,就叫做自启动电路。
由于设定的状态数可能少于系统存在的状态,且系统稳定工作时在就几个状态中跳变,故检查这几个状态之外的其他状态能否跳转到这几个状态中即可。
实际解决问题时可以根据电路图写出驱动方程,根据驱动方程和特定元件的特性方程得到电路状态方程。
最后可以列出时序状态转换表,然后确定系统的有效状态和无效状态,将系统的无效状态代入驱动方程检查能否跳变为有效状态。
其状态转换图特征为仅有一个主循环且其他状态均可进入主循环(如下图所示)。
扩展资料
具有自启动状态的电路系统抗干扰性能较强,在工作状态下受到外界干扰后能自行恢复工作,且重新启动后不需要对系统进行初始化。
如果电路不能自启动,则需要采取措施加以解决。一种解决办法是在电路开始工作时通过预置数将电路的状态置成有效状态循环中的某一种。另一种解决方法是通过修改逻辑设计加以解决。
参考资料来源:百度百科-自启动
通常有两种可供选择的方法:
其一,是利用触发器的异步置“0和异步置“1端,人为地将电路的初始状态预置成一个有效状态,在正常情况下电路便保持在有效循环状态下工作。这种方法可称为“预置法”。
其二,是通过修改时序逻辑电路的状态函数或反馈逻辑表达式·使电路一旦进入无效状态后,在时钟脉冲作用下总可以自动转入有效状态。这种方法可称为“修改逻辑函数法”。
显然,预置法”虽然简单,但需要人工干预具有较大的局限性,譬如,当电路开始工作时已预置成某一个有效状态,电路在工作过程中受到干扰信号的影响或出现短暂的异常现象,可能使电路从有效循环状态转入无效循环状态,这时必须断电或重新启动,电路才能恢复正常工作。
而“修改逻辑函数法应用于时序逻辑电路的设计后,当电路一旦进入无效状态,不需要人工干预在时钟脉冲作用下它可以自动地从无效状态转入有效状态。
扩展资料:
“修改逻辑函数法”的基本指导思想,是通过修改时序逻辑电路的状态函数或反馈逻辑表达式把无效循环中的无效状态自动诱入到有效状态具体方法和步骤为:
(1)列出电路的状态转换图确定有效循环状态和无效循环状态。
(2)画出修改后的次态函数的卡诺图及相应的次态函数式在卡诺图中,将有效状态按状态转换规律填入;将无效循环中的某状态的次态填入某个有效状态(称为被诱人的有效状态)而将其余的无效状态的次态视为随意态(用X表示)填入。
选择哪个无效态的次态用哪一个有效态替代需要仔细分析选择的原则是:以替代后(利用卡诺图化简新得到的)修改后的次态函数与未修改前的次态函数相比较时,新增加的项数最少(即最简)。
(3)根据修改后的次态函数画出逻辑图及相应的状态转换图进行验证。
时序逻辑电路在逻辑功能上的特点是任意时刻的输出不仅取决于当时的输入信号,而且还取决于电路原来的状态,或者说,还与以前的输入有关。
时序逻辑电路其任一时刻的输出不仅取决于该时刻的输入,而且还与过去各时刻的输入有关。常见的时序逻辑电路有触发器、计数器、寄存器等。
由于时序逻辑电路具有存储或记忆的功能,检修起来就比较复杂。数字电路根据逻辑功能的不同特点,可以分成两大类,一类叫组合逻辑电路(简称组合电路),另一类叫做时序逻辑电路(简称时序电路)。
组合逻辑电路在逻辑功能上的特点是任意时刻的输出仅仅取决于该时刻的输入,与电路原来的状态无关。而时序逻辑电路在逻辑功能上的特点是任意时刻的输出不仅取决于当时的输入信号,而且还取决于电路原来的状态,或者说,还与以前的输入有关。
扩展资料:
时序逻辑电路特点:
1、功能特点:电路在某采样周期内的稳态输出Y(n),不仅取决于该采样周期内的“即刻输入X(n)”,而且还与电路原来的状态Q(n)有关。(通常Q(n)记录了以前若干周期内的输入情况)
2、结构特点:除含有组合电路外,时序电路必须含有存储信息的有记忆能力的电路:触发器、寄存器、计数器等。
常用时序逻辑电路有计数器和寄存器两种。寄存器分为数据寄存器和移位寄存器。计数器种类较多,有同步计数器、异步计数器;有二进制计数器、十进制计数器、任意进制计数器;二进制计数器又有加法计数器、减法计数器等。
时序电路:实施一连串逻辑操作,在任一给定瞬时的输出值取决于其输入值和在该瞬时的内部状态,且其内部状态又取决于紧邻着的前一个输入值和前一个内部状态的器件。
时序逻辑电路状态
时序逻辑电路简称时序电路
时序电路,它是由最基本的逻辑门电路加上反馈逻辑回路(输出到输入)或器件组合而成的电路,与组合电路最本质的区别在于时序电路具有记忆功能。时序电路的特点是:输出不仅取决于当时的输入值,而且还与电路过去的状态有关。它类似于含储能元件的电感或电容的电路,如触发器、锁存器、计数器、移位寄存器、储存器等电路都是时序电路的典型器件。
时序逻辑电路的状态是由存储电路来记忆和表示的。
希望对你有所帮助。
时序逻辑电路的特点,简而言之就是它具有记忆功能。
因为时序逻辑电路的输出信号不仅与输入信号有关,而且还与电路所处的状态有关(就是说,它能够记住自己的逻辑状态)。
而记忆功能是组合逻辑电路所没有的。
555定时器属于时序逻辑电路,时序逻辑电路在逻辑功能上的特点是任意时刻的输出不仅取决于当时的输入信号,而且还取决于电路原来的状态,或者说,还与以前的输入有关。
NE555的工作温度范围为0-70°C,军用级的SE555的工作温度范围为−55到+125 °C。555的封装分为高可靠性的金属封装(用T表示)和低成本的环氧树脂封装(用V表示),所以555的完整标号为NE555V、NE555T、SE555V和SE555T。
555还有低功耗的版本,包括7555和使用CMOS电路的TLC555。7555的功耗比标准的555低,而且其生产商宣称7555的控制引脚并不像其他555芯片那样需要接地电容,同时供电与地之间也不需要消除噪声的去耦电容。
扩展资料
555定时器可工作在三种工作模式下:
1、单稳态模式:在此模式下,555功能为单次触发。应用范围包括定时器,脉冲丢失检测,反弹跳开关,轻触开关,分频器,电容测量,脉冲宽度调制(PWM)等。
2、无稳态模式:在此模式下,555以振荡器的方式工作。这一工作模式下的555芯片常被用于频闪灯、脉冲发生器、逻辑电路时钟、音调发生器、脉冲位置调制(PPM)等电路中。如果使用热敏电阻作为定时电阻,555可构成温度传感器,其输出信号的频率由温度决定。
3、双稳态模式(或称施密特触发器模式):在DIS引脚空置且不外接电容的情况下,555的工作方式类似于一个RS触发器,可用于构成锁存开关。
在同步时序电路中全部触发器均用同一个外部时钟脉冲cp触发。
而在异步时序电路中各触发器则可以采用不同的时钟信号触发。
组合逻辑电路:
组合逻辑电路在逻辑功能上的特点是任意时刻的输出仅仅取决于该时刻的输入,与电路原来的状态无关。组合逻辑电路可以有若个输入变量和若干个输出变量,其每个输出变量是其输入的逻辑函数,其每个时刻的输出变量的状态仅与当时的输入变量的状态有关,与本输出的原来状态及输入的原状态无关,也就是输入状态的变化立即反映在输出状态的变化。组合逻辑电路没有记忆功能。
时序逻辑电路:
时序逻辑电路在逻辑功能上的特点是任意时刻的输出不仅取决于当时的输入信号,而且还取决于电路原来的状态,或者说,还与以前的输入有关。时序电路具有记忆功能。
时序逻辑电路可以分为同步时序电路和异步时序电路两大类:
1同步时序电路:同步时序电路是指各触发器的时钟端全部连接在一起,并接系统时钟端;只有当时钟脉冲到来时,电路的状态才能改变;改变后的状态将一直保持到下一个时钟脉冲的到来,此时无论外部输入x有无变化;状态表中的每个状态都是稳定的
2异步时序电路:异步时序电路是指电路中除以使用带时钟的触发器外,还可以使用不带时钟的触发器和延迟元件作为存储元件;电路中没有统一的时钟;电路状态的改变由外部输入的变化直接引起可将异步时序逻辑电路分为脉冲异步时序电路和电平异步时序电路
以上就是关于时序逻辑电路自启动功能怎么判断全部的内容,包括:时序逻辑电路自启动功能怎么判断、设计时序逻辑电路时,如何解决电路不能自启动的问题、时序逻辑电路的输出取决于哪些因素.填空题等相关内容解答,如果想了解更多相关内容,可以关注我们,你们的支持是我们更新的动力!