韦达定理:
1、假设一元二次方程 ax²+bx+C=0(a不等于0)
2、方程的两根x1,x2和方程的系数a,b,c就满足:
3、x1+x2=-b/a,x1x2=c/a
如果两数α和β满足如下关系:α+β= ,α·β= ,那么这两个数α和β是方程 的根。
通过韦达定理的逆定理,可以利用两数的和积关系构造一元二次方程。
扩展资料:
一元二次方程的根的判别式为 (a,b,c分别为一元二次方程的二次项系数,一次项系数和常数项)。韦达定理与根的判别式的关系更是密不可分。
根的判别式是判定方程是否有实根的充要条件,韦达定理说明了根与系数的关系。无论方程有无实数根,实系数一元二次方程的根与系数之间适合韦达定理。判别式与韦达定理的结合,则更有效地说明与判定一元二次方程根的状况和特征。
参考资料:
百度百科——韦达定理
-b/a是数学里头的解二元一次方程组用的韦达定理中的一条。
如果ax^2 + bx +c = 0
设它有俩根为x1,x2
那么x1+x2 = -b/a
二元一次方程一般解法:
消元:将方程组中的未知数个数由多化少,逐一解决。
消元的方法有两种:
1、代入消元
例:解方程组x+y=5① 6x+13y=89②
解:由①得x=5-y③ 把③带入②,得6(5-y)+13y=89,解得y=59/7
把y=59/7带入③,得x=5-59/7,即x=-24/7
∴x=-24/7,y=59/7
这种解法就是代入消元法。
2、加减消元
例:解方程组x+y=9① x-y=5②
解:①+②,得2x=14,即x=7
把x=7带入①,得7+y=9,解得y=2
∴x=7,y=2
这种解法就是加减消元法。
以上就是关于一元二次方程两根之和和两根之积公式是什么全部的内容,包括:一元二次方程两根之和和两根之积公式是什么、二元一次方程两根之和两根之积公式是什么、等相关内容解答,如果想了解更多相关内容,可以关注我们,你们的支持是我们更新的动力!