色光谱是什么

qq刷会员2023-05-05  22

问题一:多光谱和全色数据有什么区别? 全色是通过单通道探测器探测目标表面亮度,一般是可见光波段,产生黑白图像。多光谱是通过多波段探测器探测目标表面亮度和光谱信息,有几个到几十个波段,波长范围比可见光大,还包括红外、微波

问题二:光为什么会有颜色光谱由什么决定 光的颜色跟它的频率有关,光谱的排列也是根据频率的大小排列的。

问题三:遥感影像的波段?遥感影像全色+多光谱是什么意思? 北京 揽宇方圆是咱们国内遥感影像专业公司,像遥感影像的成像波段是根据光波的长短划分的。一般来说,商业成像卫星都具有一个全色波段,四个多光谱波段,分别为蓝、绿、红和近红外。但也有例外,比如WorldView-1 只有一个全色波段;WorldView-2 有一个全色波段和八个多光谱波段;WorldView-3 有一全色波段,八个多光谱波段,八个短波红外波段和 12 个CAVIS 波段,是截止目前全球最逆天的商业成像卫星了。

问题四:光谱三原色是什么?与颜色三原色有何不同? 光谱三原色是红绿蓝,颜色三原色是红黄蓝。区别么,红绿蓝三种灯光混合光色,是白色光。红黄蓝三种颜料混合后,是黑色。另外,各自的三间色也不相同的。

问题五:在色度学中,用三原色匹配等能光谱的各种颜色是什么意思什么是等能光谱的颜色 谢谢指教! 等能光谱就是各波长颜色的能量相同

在莱特用三原色匹配光谱色的实验结果图里的那条虚线就是等能光谱

问题六:什么是单色光谱 谱仪( Spectroscope)是将成分复杂的光分解为光谱线的科学仪器,由棱镜或衍射光栅等构成,利用光谱仪可测量物体表面反射的光线,。阳光中的七色光是肉眼能分的部分(可见光),但若通过光谱仪将阳光分解,按波长排列,可见光只占光谱中很小的范围,其余都是肉眼无法分辨的光谱,如红外线、微波、紫外线、X射线等等。SEO通过光谱仪对光信息的抓取、以照相底片显影,或电脑化自动显示数值仪器显示和分析,从而测知物品中含有何种元素。这种技术被广泛地应用于空气污染、水污染、食品卫生、金属工业等的检测中。光谱仪根据现代光谱仪器的工作原理,光谱仪可以分为两大类:经典光谱仪和新型光谱仪经典光谱仪器是建立在空间色散原理上的仪器;新型光谱仪器是建立在调制原理上的仪器经典光谱仪器都是狭缝光谱仪器调制光谱仪是非空间分光的,它采用圆孔进光根据色散组件的分光原理,光谱仪器可分为:棱镜光谱仪,复膜机衍射光栅光谱仪和干涉光谱仪光学多道分析仪OMA (Optical Multi-channel Analyzer)是近十几年出现的采用光子探测器(CCD)和计算机控制的新型光谱分析仪器,它集信息采集,处理, 存储诸功能于一体由于OMA不再使用感光乳胶,避免和省去了暗室处理以及之后的一系列繁琐处理,测量工作,使传统的光谱技术发生了根本的改变,大大改善了工作条件,提高了工作效率;管道离心泵使用OMA分析光谱,测盆准确迅速,方便,且灵敏度高,响应时间快,光谱分辨率高,测量结果可立即从显示屏上读出或由打印机,绘图仪输出目前,它己被广泛使用于几乎所有的光谱测量,分析及研究工作中,特别适应于对微弱信号,瞬变信号的检测不锈钢阀门Labspark750火花直读光谱仪广泛应用于冶金、铸造、机械、金属加工、汽车制造、有色、航空航天、兵器、化工等领域的生产过程控制,中心实验室成品检验等,可用于Fe、Al、Cu、Ni、Co、Mg、Ti、Zn、Pb等多种金属及其合金样品分析。可对片状、块状以及棒状的固体样品中的非金属元素(C、P、S、B等)以及金属元素进行准确定量分析。横切机光谱仪是在特定波长范围来测量来源光线的设备。先就结构说明再描述其原理。他的构成包括五个部分。入口狭缝:通常由一个长狭缝组成的入口。一个校准元件,用来将所有通过入口狭缝的光保持平行。这个元件可能是一个透镜或是一个色散元件(dispersing element)的少数或整体部分,例如在凹面光栅光谱仪中便是使用这类装置。换向器一个色散元件,用来改变通过系统的光强度。通过系统的光路径由其波长决定,如光栅、镜。一个聚焦元件,可将the entry field-stop成像於适当的焦平面(focal plane)上。一个出口狭缝。气动球阀光谱仪,又称分光仪。不锈钢球阀以光电倍增管等光探测器在不同波长位置,测量谱线强度的装置。其构造由一个入射狭缝,一个色散系统,一个成像系统和一个或多个出射狭缝组成。以色散元件将辐射源的电磁辐射分离出所需要的波长或波长区域,并在选定的波长上(或扫描某一波段)进行强度测定。排污泵分为单色仪和多色仪两种

三基色指红绿蓝三种颜色的光,由三基色经过不同比例混合(该比例可能为负值)可调和成其他颜色的光

三基色的选择并不固定,由于它们恰好和人眼视网膜上的三种识别椎体相对应,故选为三基色,在此三基色上形成1931标准,是最常用的色度学标准。另外还有其他颜色标准(如1931-XYZ标准),选取其他颜色为三基色。

另楼上关于单色光的解释,我补充一点点:

颜色分为光谱色和非光谱色,非光谱色由对应色调的光谱色和白光混合而成,混合比例以饱和度表示,光谱色不会色散,但混合而成的非光谱色单色光则可能色散(我自己还不太清楚,若说错了见谅)

在赋予宝石美丽的诸多因素中,颜色是一个主要的因素,甚至是唯一的因素。了解颜色的成因,对有色宝石的鉴定、合成和改善均具有一定的指导意义。

一、颜色的定义

颜色是光对人眼的色刺激,经大脑翻译所产生的结果。要产生颜色,必须要有光源、与光作用的物体及接受光的人眼和解释它的大脑,这3个条件缺一不可。

颜色是具有一定波长的电磁波。宝石的颜色是宝石对400~700nm的可见光波进行选择性的吸收后,透射或反射出的光波的混合色。颜色是人眼对可见光的一种反应,但由于个体的差异,人眼可能观察到的可见光的波长范围可扩展为380~760nm。不同的波长对应着不同的颜色,表1-3-1列出了颜色和波长的对应关系。

表1-3-1 颜色与波长的对应关系

当白光到达宝石的表面时,一部分被反射,另一部分被折射进入宝石。如果没有反射或折射的光波被吸收,宝石将是无色的。某种波长被吸收(称为选择性吸收)后,进入人眼的光波的混合色,即是我们所见的颜色(也称为选择性透过)。

二、致色元素

绝大多数宝石产生选择性吸收的原因是因为含有某些元素,它们既可以主要化学成分存在,也可以微量元素存在,被称为致色元素,其中最主要的是钛、钒、铬、锰、铁、钴、镍、铜等过渡族金属元素。根据宝石的化学成分和构造特征可将颜色分为自色、他色和假色,相应的宝石分为自色宝石和他色宝石。

1自色

致色元素以宝石的主要化学成分出现,且颜色是恒定的,这种宝石叫自色宝石。如菱锰矿总是呈红色—橙**,孔雀石总是呈绿色,蓝铜矿总是呈蓝色。表1-3-2为常见自色宝石的颜色及致色元素。

2他色

组成宝石的主要元素不产生特征的颜色,因微量元素而致色的宝石称为他色宝石。他色宝石纯净时,为无色透明或不透明时呈现白色,当混入其他元素时,呈现各种不同的颜色。如刚玉,纯净时是无色的,当有微量的铬代替铝时,就呈红色(红宝石),若含铁和钛则呈蓝色(蓝宝石)。表1-3-3为常见的他色宝石及其致色元素。

表1-3-2 自色宝石的颜色和致色元素

3假色

假色是由于宝石内部存在一些细小的平行排列的包裹体、出溶片晶、平行解理等特殊结构,与光发生物理光学效应产生的颜色,如晕彩、锖色、变彩等。

表1-3-3 他色宝石的颜色和致色元素

三、有色宝石的呈色机理

有色宝石颜色的成因是由其化学成分和晶体结构所决定的。呈色机理有如下几种:

1过渡金属元素的内部电子跃迁

晶体场理论认为,原子是由原子核及围绕核的许多沿确定轨道层运动的电子所组成,电子的运动状态受原子内部及相邻原子之间的吸引力控制。在过渡金属族元素中,当白光射入宝石的晶格中时,晶体中的过渡金属元素的d电子就会被能量相同的光波激发,从基态跃迁到能量较高的轨道上,激发电子所需要的能量在12~37eV之间,与可见光的波长范围400~700nm中的某些波段对应。因此,当宝石中的电子跃迁时,就会对可见光进行选择性的吸收,而透射或反射出的光波的混合色就是宝石的颜色。

除了过渡金属元素(具有3d,4d轨道)内部d-d电子跃迁可以产生颜色外,某些镧系、锕系元素(具有4f,5f轨道),也可产生f-f电子跃迁使宝石呈色。由过渡金属离子引起的d-d跃迁呈色的宝石品种列于表1-3-4中。

表1-3-4 过渡金属离子引起的宝石致色

下面以红宝石、变石、祖母绿中Cr3+为例来解释宝石d-d跃迁的呈色机理(图1-3-1)。

这3种宝石的致色离子均为Cr3+,根据晶体场理论,Cr3+的d轨道在八面体配位场中可以分裂为3个能级,即4A2,4T2,4T1,Cr3+的3个d电子都处于能量较低的4A2(基态)轨道中,并且全部为单电子。在可见光的照射下,d电子分别发生从4A2→4T2,4A2→4T1的跃迁。由于3个宝石的化学成分不同,引起配位场构型畸变,因而3个宝石在跃迁过程中吸收的能量各不相同。红宝石(Al2O3)中d-d跃迁吸收的能量分别为225eV和302eV,对应于绿—黄光(551nm)和蓝紫色(410nm),透过的是大部分红橙光和部分蓝光,因而红宝石最终呈现带紫色调的红色;祖母绿吸收了204eV和292eV能量,分别对应吸收的颜色波长为608nm的橙**光和425nm的蓝紫色光,透过光波的混合色组成了祖母绿的绿色;变石(BeAl2O4)化学式介于红宝石与祖母绿之间,Cr3+与周围配位体的电场强度低于红宝石,高于祖母绿,在电子跃迁过程中吸收的能量分别为216eV和298eV,介于红宝石和祖母绿之间,对应吸收的波长分别为575nm的橙**光和416nm的蓝紫色光,透过红光和蓝绿光。因变石透过的红光和绿光基本上处于平衡状态,宝石最终呈现何种颜色取决于光源。由于日光及色温较高的日光灯蓝绿色成分偏多,变石显示绿色,而在红光成分较多的白炽灯或烛光下则显示红色。

图1-3-1 Cr3+在红宝石、变石及祖母绿中的d-d电子跃迁示意

2元素离子间的电荷转移

分子轨道理论认为,当原子形成分子后,电子的运动不再局限于单一的原子轨道,而是在相应的分子轨道中运动。当两个或两个以上的原子组成分子后,各原子轨道按照一定的规则组成分子轨道,不同原子内的电子可从一个原子轨道跃迁到另一个原子轨道上,这种作用叫电荷转移。在电荷转移的过程中,要吸收能量,所需的能量正好和可见光的某些光波相对应,而使宝石呈色。这种作用主要表现为氧化-还原过程。

元素离子间的电荷转移可以发生在同种或不同种金属离子与金属离子之间,前者又称为同核原子价态之间的电荷转移,后者称为异核原子之间的电荷转移,如宝石中常见的Fe2+-Fe3+/Fe3+-Fe2+;Ti4+-Ti3+/Ti3+-Ti4+;Mn2+-Mn4+/Mn3+-Mn3+;Fe2+-Ti4+/Fe3+-Ti3+;也可以发生于非金属离子-金属离子之间,如宝石中有O2-→Fe3+,O2-→Cr6+,O2-→V5+等;还可以是非金属-非金属间的转移。表1-3-5列出了电荷转移致色的宝石品种及颜色。蓝宝石的蓝色就是Fe2+-Ti4+异核原子价态之间的电荷转移吸收了红光和黄光,从而使蓝宝石呈蓝色。

表1-3-5 电荷转移引起的宝石颜色

3色心

有些宝石矿物的颜色是由晶体缺陷导致的,称为色心致色。色心可分为两种类型:电子色心和空穴色心。

(1)电子色心(F心)

是由电子占据晶体结构中的阴离子空位引起的色心。当一个电子被捕获到晶体中在正常情况下不存在电子的位置上时,该电子具有占据不同能级和吸收光线的能力,其产生颜色的方式与过渡金属的未配对电子相似。如萤石的化学式为CaF2,由于Ca2+含量过高和受放射性辐照影响,造成F-缺位而为电子占据,形成电子色心,该色心吸收黄绿光波,而使萤石呈紫色。

(2)空穴色心(V心)

是由于阳离子在晶体结构中缺位而引起的色心。当一个本该存在电子的位置上缺少一个电子时,就留下了一个空穴和一个能吸收光的未配对电子。烟晶(SiO2)中当Si4+被Al3+﹢H+(或Na+)取代后,结构中的电中性被破坏,受辐照后,Al3+邻近的O2-的1个价电子被激发离开其轨道,出现未配对电子,形成空穴色心,产生紫外—可见光范围的吸收,使之呈烟色。

若用X射线或γ射线辐照,受弱控制的电子就会被移位,留下空穴和能产生颜色的未配对电子。为产生色心所需的辐照,可靠自然界少量的放射性矿物在漫长的时间内完成,也可人为地使用X射线、γ射线或离子束来完成,如蓝色托帕石、紫晶等就是通过辐照而呈色的。

4能带间的电子跃迁呈色

能带理论认为:晶体中的电子不束缚于某个原子,而为整个晶体所共有,并在整个晶体中作周期性共有化运动。在宝石晶体中,各个原子的相似轨道能级发生相互重叠而构成各个能量范围不同的能带,电子按能级高低分别处在各能带中。能带又可分为:①导带(空带),由未填充电子的能级所形成的一种高能量带;②带隙(禁带):为价带最上部的面(又称费米面)与导带最下部面之间的距离,禁带宽度(用ΔEg表示)随矿物键性的不同而不同;③价带(满带),由已充满电子的原子轨道能级所构成的低能量带。处在价带顶部的电子当受到大于ΔEg的外来能量(可见光)激发时,可以跃迁到导带上去,吸收可见光能量而使晶体产生颜色。宝石的颜色取决于电子从价带向导带跃迁时所吸收的辐射能。当ΔEg在可见光能量范围之内时,能量大于ΔEg的被宝石吸收,能量小于ΔEg的透过宝石,而使宝石呈色。

5物理因素致色

由于包裹体、特殊结构、双晶、裂隙等与可见光波发生干涉、衍射、散射等作用而使宝石呈现的颜色,为物理因素致色。

1)干涉:当两条光线相遇叠加沿同一路线传播时,由于彼此的位相原因造成光波相互增强或抵消,其效果是产生非纯正光谱色。这种干涉色常见于有裂隙、薄层包裹体或具不同物质薄层结构的材料,如晕彩石英。

2)衍射:衍射为光干涉的一种特殊类型。产生衍射的宝石具有规则的不同折射率的交替层堆积,当白光与之相互作用时发生光波的定向传播,其效果是产生纯正光谱色,如欧泊的变彩。

3)散射:宝石材料内部结构不规则或粒度超出衍射限定范围(约100~400nm)或含直径大于可见光波长的包裹体、微晶微裂隙或气泡时,入射光线因传播介质的不均匀性造成光在不同方向上的反射而呈现颜色,如普通蛋白石、乳石英等。

4)包裹体致色:很多宝石会因机械地混入了其他矿物包裹体而呈现颜色,如赤铁矿使玉髓呈红色(肉红玉髓),石英岩中的铬云母包裹体使石英岩呈绿色等。

四、颜色的三要素

在色度学中用色调、饱和度、明度来表示颜色的特征。非彩色系列不具有色调和饱和度特征,它们仅有明度的变化。对于彩色系列中的每一种颜色,均有色调、明度、饱和度3个特征,称为表征颜色的三要素。

1色调(色相)

指彩色的类别,如红、橙、黄、绿、青、蓝、紫。彩色宝石的色调取决于光源的光谱组成和宝石对光的选择性吸收。色调通常用主波长λd来表示。

2饱和度(纯粹度或彩度)

指彩色的纯净度或鲜艳程度。彩色宝石的饱和度取决于宝石对可见光光谱选择性吸收的程度,可见光光谱中的各单色光饱和度最高,饱和度值为1,复色光(即白光)的饱和度最低,其值为0。当宝石仅对可见光某一很窄波段的光反射或透过时,颜色饱和度就高,宝石就鲜艳。通常用饱和的彩色光与白光的相对含量来表示。

3明度(亮度)

指彩色的明亮程度。宝石颜色的明度取决于宝石对光的反射或透射能力。宝石对光的反射比或透射比越高,宝石的明度越大。通常用宝石的视觉透射率来表示。颜色的明亮程度不仅与宝石的折射率、光泽及加工工艺有关,而且与宝石的表面光洁度和颜色深浅有关。

五、有色宝石颜色的表征

有色宝石颜色的观察和描述常带有一定的主观性,为了客观、有效地传达色彩,目前广泛使用孟塞尔表色系统、国际照明委员会CIE色度学系统以及GemDialogue或GemSet比较系统来表征有色宝石的颜色,但目前国际上并无任何统一的标准。

图1-3-2 孟塞尔色立体外形图

1孟塞尔表色系统

孟塞尔表色系统将颜色的三要素用三维坐标立体形式表示(图1-3-2)。该系统水平剖面上的各个方向,圆周被分为10个部分,代表10种孟塞尔色相;孟塞尔彩度以离开中央轴的距离表示,从中心至边缘,愈远则彩度愈大;孟塞尔色立体的中心轴,表示明度,代表从底部黑色到顶部白色的白黑系列的明度等级,中间明度划分1~9个等级。彩色系列的明度以离开基底平面高度相等的灰色来度量,共分为11个等级。颜色标定方法是:HV/C,其中符号H、V、C分别代表色相、明度和彩度。

21931CIE-XYZ表色系统

CIE标准色度系统是由国际照明委员会(简称CIE)规定的标准色度系统,是以颜色匹配实验为基础,设定每一种颜色都能用3个选定的原色按适当的比例混合而成。在颜色匹配实验中,常选用红(700nm)、绿(5461nm)、蓝(4358nm)作为三原色,将与待测颜色匹配时所需的三原色的数量,称为三刺激值,用X、Y、Z表示。三刺激值的单位选用色度学单位,对于匹配等能光谱色的三原色数量,称为光谱三刺激值。这是一种定量测量颜色的方法,通过紫外-可见光分光光度计测量宝石在可见光范围400~700nm不同波长的三刺激值,可借助于计算程序,方便地计算出其色度坐标(x,y,z):

有色宝石学教程

3个色度坐标中有一个是不独立的,因而可用x、y直角坐标系来表示各种颜色色品。

图1-3-3为CIEx、y色品图,图中(X)表示红原色,(Y)表示绿原色,(Z)表示蓝原色,为假想的三原色;图中马蹄形曲线为光谱轨迹,由光谱色的坐标点连成,凡是马蹄形曲线内部的所有坐标点(包括曲线本身)都是物理上能实现的颜色。

图1-3-3 CIEx、y色品图

宝石学中,我们先在CIEx、y色品图上标出光源和宝石的色度坐标,就可知道宝石在该光照下的色调λd和颜色饱和度。如图1-3-3所示,O点为白点(光源的坐标点,以D65光源为例),S1、S2分别为两样品颜色的色度坐标点,由白点(O点)向颜色S1引一直线,延长与光谱轨迹相交于L点,由此得到S1的主波长λd=584nm,颜色的主波长大致相当于人眼感知到的颜色色相,表明该宝石颜色大致为**色调。线段OS1与线段OL的比,记为Pe=OS1/OL,比值Pe表示兴奋纯度,即主波长的光谱色被白光冲淡的程度。兴奋纯度与颜色的饱和度呈正相关关系。S1点越接近O点,说明该颜色纯度(饱和度)越低,即颜色越不鲜艳。OS1/OL之比值越接近1,表明该宝石的颜色越接近光谱色。刺激值中的Y值大致代表了该颜色的明度。同理,向颜色S2引一直线,延长与光谱轨迹相交,得到λc或记为-λd,表示S2的补色波长。

3GemDialogue和Gem Set体系

GemDialogue(图1-3-4)体系借助各种颜色标尺(色卡)与宝石颜色进行对比,来描述和评价宝石颜色的三要素。颜色标尺手册是由21张透明的颜色标尺(色卡)及3张色罩组成。21张色标相当于21种色相,囊括了有色宝石主要的色相范围,每张色卡上有每种颜色的10个不同饱和度的带,分别为100、90、80、……10,用来表示颜色彩度由深到浅、直至无色的变化。这些色卡也可重叠起来使用,提供60000多种颜色的比较。色罩为透明黑/灰色、不透明黑/白色及透明褐色等3种,同样也有10个不同饱和度的带,可用它们模拟每种颜色中褐色或黑色的罩(即颜色被褐色或黑色掩盖了多少),用于描述隐藏于颜色中的黑/灰色调或褐色调的强度及不透明宝石。

Gem Set(图1-3-5)体系是用一套与宝石形状相近的塑料片和有色宝石的颜色进行对比的方法。其优点是塑料片的形状与宝石相近,且透明便于比较。缺点是这套体系较大,不便于携带,且塑料片容易老化。GemDialogue的优点是体小便携,但缺乏立体感。

图1-3-4 GemDialogue

图1-3-5 GemSet

光颜色丰富,在一起组成白光,事物的颜色由它反色光的能力决定,反射什么颜色的光看到的就是什么颜色。

光的直线传播规律已如上述。大地测量也是以此为依据的,光的独立传播规律,两束光在传播过程中相遇时互不干扰,仍按各自途径继续传播,当两束光会聚同一点时,在该点上的光能量是简单相加的。

光的反射和折射定律,光传播途中遇到两种不同介质的分界面时,一部分反射,一部分折射。反射光线遵循反射定律,折射光线遵循折射定律。

扩展资料:

光同时具备以下四个重要特征:

1、在几何光学中,光以直线传播。笔直的“光柱”和太阳“光线”都说明了这一点。

2、在波动光学中,光以波的形式传播。光就像水面上的水波一样,不同波长的光呈现不同的颜色。

3、光速极快,在空气中的速度要慢些。在折射率更大的介质中,譬如在水中或玻璃中,传播速度还要慢些。

4、在量子光学中,光的能量是量子化的,构成光的量子(基本微粒),我们称其为“光量子”,简称光子,因此能引起胶片感光乳剂等物质的化学变化。

色纯度(Purity)

其为以主波长描述颜色时之辅助表示,以百分比计,定义为待测件色度坐标与E光源之色度坐标直线距离与E光源至该待测件主波长之光谱轨迹(SpectralLocus)色度坐标距离的百分比,纯度愈高,代表待测件的色度坐标愈接近其该主波长的光谱色,是以纯度愈高的待测件,愈适合以主波长描述其颜色特性,LED即是一例。

三原色可以混合为任意颜色(严格的说,应该说任意人类可以感知的颜色)的根本原因在于人眼只有三种感光细胞,分别对应于三种颜色,三原色混合之后,其波长没有变化(也就是混合之后,如果在频谱上看,只是简单叠加),但在人类大脑体验时则为不同于三原色的新的色彩,而此色彩特性取决于三种感光细胞的刺激强度分配。且此色彩感知可以与三原色之外的某一另外色彩完全一致——若想做到这一点,只需此“另外色彩”对于三种感光细胞的刺激程度的比例恰好等于源三原色强度之间的比例即可。

那对于本来就是其他颜色波长的光,不是由三原色混合而成的,人眼又是如何识别的?这可以由人体感光细胞的带宽不为零解释——任何感应器的带宽都做不到零,可以用高斯型来理解(很不严格的高斯型);而对于人类视觉,这种宽带特征恰好可以用于感知三原色之外的波长,而三种感光细胞对于某一特定波长的敏感度是不同的,大脑通过敏感度差异对颜色进行处理。这就是我在上面提到的:“只需此“另外色彩”对于三种感光细胞的刺激程度的比例恰好等于源三原色强度之间的比例即可”,这里的“另外色彩”就是指非三原色混合成的其他颜色的光。

以上就是关于色光谱是什么全部的内容,包括:色光谱是什么、单色光与三基色区别、有色宝石的颜色及呈色机理等相关内容解答,如果想了解更多相关内容,可以关注我们,你们的支持是我们更新的动力!

转载请注明原文地址:https://juke.outofmemory.cn/read/3808704.html

最新回复(0)