六分之一以2为底,k的对数的倒数是

比鲁斯猫2023-05-05  34

六分之一以2为底k的对数=6分之(log(2)(k))

六分之一以2为底k的对数的倒数是=(log(2)(k)分之6

或者:六分之一以2为底k的对数的倒数是=(log(2) k)分之6

朋友,请及时采纳正确答案,下次还可能帮您,您采纳正确答案,您也可以得到财富值,谢谢。

我们可以把这一对对数函数化成指数函数去观察它们的关系.y=log3x可化成3的Y次方=X,y=log1/3x可化成1/3的Y次方=X,即可以写成3的-Y次方=X.然后在把现在的指数函数变成对数函数,就会发现他们的Y值是相反的,所以底数互为倒数的对数函数,函数值是相反的.即y=log1/3x我们还能把它写成y=log3(-X)的形式.

e,作为数学常数,是自然对数函数的底数。有时称它为欧拉数(Euler number),以瑞士数学家欧拉命名;也有个较鲜见的名字纳皮尔常数,以纪念苏格兰数学家约翰·纳皮尔 (John Napier)引进对数。它就像圆周率π和虚数单位i,e是数学中最重要的常数之一。

它的其中一个定义是

其数值约为(小数点后100位):“e ≈ 271828 18284 59045 23536 02874 71352 66249 77572 47093 69995 95749 66967 62772 40766 30353 54759 45713 82178 52516 64274”。

在1690年,莱布尼茨在信中第一次提到常数e。在论文中第一次提到常数e,是约翰·纳皮尔(John Napier)于1618年出版的对数著作附录中的一张表。但它没有记录这常数,只有由它为底计算出的一张自然对数列表,通常认为是由威廉·奥特雷德(William Oughtred)制作。

第一次把e看为常数的是雅各·伯努利(Jacob Bernoulli)。欧拉也听说了这一常数,所以在27岁时,用发表论文的方式将e“保送”到微积分。

已知的第一次用到常数e,是莱布尼茨于1690年和1691年给惠更斯的通信,以b表示。1727年欧拉开始用e来表示这常数;而e第一次在出版物用到,是1736年欧拉的《力学》(Mechanica)。虽然以后也有研究者用字母c表示,但e较常用,终于成为标准。

用e表示的确实原因不明,但可能因为e是“指数”(exponential)一字的首字母。另一看法则称a,b,c和d有其他经常用途,e则是第一个可用字母。还有一种可能是,字母“e”是指欧拉的名字“Euler”的首字母。

以e为底的指数函数的重要方面在于它的函数与其导数相等。e是无理数和超越数(见林德曼-魏尔斯特拉斯定理(Lindemann-Weierstrass))。这是第一个获证的超越数,而非故意构造的(比较刘维尔数);由夏尔·埃尔米特(Charles Hermite)于1873年证明。

其实,超越数主要只有自然常数(e)和圆周率(π)。自然常数的知名度比圆周率低很多,原因是圆周率更容易在实际生活中遇到,而自然常数在日常生活中不常用。

融合e,π的欧拉公式

也是超越数e的数学价值的最高体现。

自然常数一般为公式中乘方的底数和对数的底。为什么会这样,主要取决于它的来历。

法语中的序数词,数字与“E”组成,例如:Première,21e为Vingt-première。

自然常数的来法比圆周率简单多了。它就是当

时函数

值的极限。

即:

同时,它也等于

注意1!也等于1。

自然常数经常在公式中做对数的底。比如,对指数函数和对数函数求导时,就要使用自然常数。函数

的导数为

函数

的导数为

因为e=27182818284 ,极为接近循环小数271828(1828循环),那就把循环小数化为分数271801/99990,所以可以用271801/99990表示为e最接近的有理数约率,精确度高达999999999(7个9)% 。

扩展资料

1844年,法国数学家刘维尔最先推测e是超越数,一直到了1873年才由法国数学家埃尔米特证明e是超越数。

1727年,欧拉最先用e作为数学符号使用,后来经过一个时期人们又确定用e作为自然对数的底来纪念他。有趣的是,e正好是欧拉名字第一个小写字母,是有意的还是偶然巧合?现已无法考证!

e在自然科学中的应用并不亚于π值。像原子物理和地质学中考察放射性物质的衰变规律或考察地球年龄时便要用到e。

在用齐奥尔科夫斯基公式计算火箭速度时也会用到e,在计算储蓄最优利息及生物繁殖问题时,也要用到e。

同π一样,e也会在意想不到的地方出现,例如:“将一个数分成若干等份,要使各等份乘积最大,怎么分?”要解决这个问题便要同e打交道。答案是:使等分的各份尽可能接近e值。

如,把10分成10÷e≈37份,但37份不好分,所以分成4份,每份为10÷4=25,这时25^4=390625乘积最大,如分成3或5份,乘积都小于39。e就是这样神奇的出现了。

1792年,15岁的高斯发现了素数定理:“从1到任何自然数N之间所含素数的百分比,近似等于N的自然对数的倒数;N越大,这个规律越准确。”这个定理到1896年才由法国数学家阿达玛和几乎是同一时期的比利时数学家布散所证明。

以e为底还有很多优越性。如以e为底编制对数表最好;微积分公式也具有最简的形式。这是因为只有e^x导数就是其自身,即d/dx(e^x)=e^x。

参考资料来源:百度百科-自然常数

参考资料来源:百度百科-超越数

ln{√(x²+1)- x}

=ln{(√(x²+1)- x)(√(x²+1)+ x)/(√(x²+1)+ x)

分子用平方差公式

=ln{1/(√(x²+1)+ x}

对数的倒数,-1次方

=-ln{√(x²+1)+ x}

loga{-x+√(1+x²)}怎么等于= - loga{x+√(1+ x²)}

这题是一样的

loga{-x+√(1+x²)}

=loga{(√(1+ x²)-x)(√(1+x²)+x)/(√(1+ x²)+x)}

= loga{1/(x+√(1+ x²))}

= - loga{x+√(1+ x²)}

e在科学技术中用得非常多,一般不使用以10为底数的对数。以e为底数,许多式子都能得到简化,用它是最“自然”的,所以叫“自然对数”。

我们可以从自然对数最早是怎么来的来说明其有多“自然”。以前人们做乘法就用乘法,很麻烦,发明了对数这个工具后,乘法可以化成加法,即:

log(a

b)

=

loga

+

logb

但是能够这么做的前提是,我要有一张对数表,能够知道loga和logb是多少,然后求和,能够知道log多少等于这个和。虽然编对数表很麻烦,但是编好了就是一劳永逸的事情,因此有个大数学家开始编对数表。但他遇到了一个麻烦,就是这个对数表取多少作为底数最合适?10吗?或是2?为了决定这个底数,他做了如下考虑:

1所有乘数/被乘数都可以化到01-1之内的数乘以一个10的几次方,这个用科学记数法就行了。

2那么现在只考虑做一个0-1之间的数的对数表了,那么我们自然用一个0-1之间的数做底数。(如果用大于1的数做底数,那么取完对数就是负数,不好看;)

3这个0-1间的底数不能太小,比如01就太小了,这会导致很多数的对数都是零点几;而且“相差很大的两个数之的对数值却相差很小”,比如01做底数时,两个数相差10倍时,对数值才相差1换句话说,像05和055这种相差不大的数,如果用01做底数,那么必须把对数表做到精确到小数点以后很多位才能看出他们对数的差别。

4为了避免这种缺点,底数一定要接近于1,比如099就很好,09999就更好了。总的来说就是1

-

1/X

X越大越好。在选了一个足够大的X(X越大,对数表越精确,但是算出这个对数表就越复杂)后,你就可以算

(1-1/X)^1

=

p1

,

(1-1/X)^2

=

p2

,

……

那么对数表上就可以写上

P1

的对数值是

1,P2的对数值是

2……(以1-1/X作为底数)。而且如果X很大,那么P1,P2,P3……间都靠得很紧,基本可以满足均匀地覆盖了01-1之间的区间。

5最后他再调整了一下,用

(1

-

1/X)^

X作为底,这样P1的对数值就是1/X,

P2的对数值就是2/

X,……

PX的对数值就是1,这样不至于让一些对数值变得太大,比如若X=10000,有些数的对数值就要到几万,这样调整之后,各个数的对数值基本在0-几之间。两个值之间最小的差为1/X。

6现在让对数表更精确,那么X就要更大,数学家算了很多次,1000,1万,十万,最后他发现,X变大时,这个底数(1

-

1/X)^

X趋近于一个值。这个值就是1/e,自然对数底的倒数(虽然那个时候还没有给它取名字)。其实如果我们第一步不是把所有值放缩到01-1之间,而是放缩到1-10之间,那么同样的讨论,最后的出来的结果就是e了

---

这个大数学家就是著名的欧拉(Euler),自然对数的名字e也就来源于欧拉的姓名。

当然后来数学家对这个数做了无数研究,发现其各种神奇之处,出现在对数表中并非偶然,而是相当自然或必然的。因此就叫它自然对数底了。

1/lnx在定义域内连续, 所以理论上讲其反导数一定是存在的, 只要对1/lnx做变上限定积分就可以得到其反导数

只不过1/lnx的反导数不是初等函数, 这一点要用Liouville定理证明, 初学的时候可以不用纠结, 记住一些常见的例子就行了

对数函数真数互为倒数图像:设对数为log(a)N,对数的倒数为1/log(a)N=1/(lgN/lga)=lga/lgN=log(N)a。

对数函数的倒数等于对数的底数和对数互换。如log(2)3=ln3/ln2故其倒数为ln2/ln3=log(3)2。以a为底b的对数的倒数是以b为底a的对数,即把对数的真数与底数互换,所得两对数互为倒数。

一般地

函数y=logaX(a>0,且a≠1)叫做对数函数,也就是说以幂(真数)为自变量,指数为因变量,底数为常量的函数,叫对数函数。其中x是自变量,函数的定义域是(0,+∞),即x>0。它实际上就是指数函数的反函数,可表示为x=ay。因此指数函数里对于a的规定,同样适用于对数函数。

自然对数 就是对e求对数 即ln

对数运算有几个规律

ln(xy)=lnx+lny

ln(x/y)=lnx-lny

ln(x^y)=ylnx

lny=ln{[(x^2)/(x^2-1)][(x+2)/(x-2)^2]^(1/3)}

=ln(x^2)-ln(x^2-1)+ln(x+2)^(1/3)-ln(x-2)^2^(1/3)

=2lnx - ln(x^2-1) + [ln(x+2) ]/3- 2[ln(x-2)]/3

自然对数:以e为底的对数,表示为ln=loge

x² 取自然对数:lnx² =2lnx

x²/(x² -1) 取自然对数:ln[x²/(x²-1)]=lnx²-ln(x²-1)=2lnx-ln(x²-1)

扩展资料:

对数求导法是一种求函数导数的方法。

取对数的运算可将幂函数、指数函数及幂指函数运算降格成为乘法运算,可将乘法运算或除法运算降格为加法或减法运算,使求导运算计算量大为减少。

对数求导法应用相当广泛。

函数是乘积形式、商的形式、根式、幂的形式、指数形式或幂指函数形式的情况,求导时比较适用对数求导法,这是因为:取对数可将乘法运算或除法运算降格为加法或减法运算,取对数的运算可将根式、幂函数、指数函数及幂指函数运算降格成为乘除运算。

参考资料来源:百度百科-对数求导法

以上就是关于六分之一以2为底,k的对数的倒数是全部的内容,包括:六分之一以2为底,k的对数的倒数是、对数函数底数互为相反数有什么联系,eg:y=log3x及y=log1/3x、极限等于e 得问题 极限等于e的公式哪来得不是两个重要极限等相关内容解答,如果想了解更多相关内容,可以关注我们,你们的支持是我们更新的动力!

转载请注明原文地址:https://juke.outofmemory.cn/read/3808198.html

最新回复(0)