如果上下底面为椭圆,则叫做椭圆柱。
在同一个平面内有一条定直线和一条动线,当这个平面绕着这条定直线旋转一周时,这条动线所成的面叫做旋转面,这条定直线叫做旋转面的轴,这条动线叫做旋转面的母线。
1
圆柱的两个圆面叫底面,周围的面叫侧面,一个圆柱体是由两个底面和一个侧面组成的。
2
圆柱体的两个底面是完全相同的两个圆面。两个底面之间的距离是圆柱体的高。
3
圆柱体的侧面是一个曲面,圆柱体的侧面的展开图是一个矩形或正方形。
4
圆柱的侧面积=底面周长x高,即:
S侧面积=Ch=2πrh
底面周长C=2πr=πd
圆柱的表面积=侧面积+底面积x2=Ch+2πr^2=2πr(r+h)
圆柱的体积=底面积x高
即
V=S底面积×h=(π×r×r)h
5
等底等高的圆柱的体积是圆锥的3倍。
希望我能帮助你解疑释惑。
圆的面积等于半径的平方乘以314,半径等于直径的二分之一。
圆的面积公式为:S=πr²,S=π(d/2)²,(d为直径,r为半径,π是圆周率,通常取314),圆面积公式的是由古代数学家不断推导出来的。
我国古代的数学家祖冲之,从圆内接正六边形入手,让边数成倍增加,用圆内接正多边形的面积去逼近圆面积。
古希腊的数学家,从圆内接正多边形和外切正多边形同时入手,不断增加它们的边数,从里外两个方面去逼近圆面积。
古印度的数学家,采用类似切西瓜的办法,把圆切成许多小瓣,再把这些小瓣对接成一个长方形,用长方形的面积去代替圆面积。
16世纪的德国天文学家开普勒,把圆分割成许多小扇形;不同的是,他一开始就把圆分成无穷多个小扇形。圆面积等于无穷多个小扇形面积的和,所以在最后一个式子中,各段小弧相加就是圆的周长2πR,所以有S=πr²。
与圆相关的公式:
1、半圆的面积:S半圆=(πr^2)/2。(r为半径)。
2、圆环面积:S大圆-S小圆=π(R^2-r^2)(R为大圆半径,r为小圆半径)。
3、圆的周长:C=2πr或c=πd。(d为直径,r为半径)。
4、半圆的周长:d+(πd)/2或者d+πr。(d为直径,r为半径)。
5、扇形弧长L=圆心角(弧度制)×R= nπR/180。(θ为圆心角)(R为扇形半径)
6、扇形面积S=nπ R²/360=LR/2。(L为扇形的弧长)
7、圆锥底面半径 r=nR/360。(r为底面半径)(n为圆心角)
于无穷多个小扇形面积的和,所以在最后一个式子中,各段小弧相加就是圆的周长2πR,所以有S=πr²。
圆的面积计算公式:
或
其中,S代表面积,r代表半径,d代表直径,π代表圆周率。
扩展资料:
在一个平面内,一动点以一定点为中心,以一定长度为距离旋转一周所形成的封闭曲线叫做圆。同圆内圆的直径、半径长度永远相同,圆有无数条半径和无数条直径。
圆的面积推导:把圆分成若干等份,可以拼成一个近似的长方形。长方形的宽相当于圆的半径,如图所示,则求圆的面积可以转换为求长方形的面积:
参考资料:
以上就是关于圆柱的上下面是圆形,那么上下面是椭圆形的不叫圆柱叫什么呢全部的内容,包括:圆柱的上下面是圆形,那么上下面是椭圆形的不叫圆柱叫什么呢、圆的面积公式是什么、圆的面积公式等相关内容解答,如果想了解更多相关内容,可以关注我们,你们的支持是我们更新的动力!