向量a·a等于多少

内史2023-05-05  28

a×a=0(向量)

在数学中,向量(也称为欧几里得向量、几何向量、矢量),指具有大小(magnitude)和方向的量。它可以形象化地表示为带箭头的线段。箭头所指:代表向量的方向;线段长度:代表向量的大小。与向量对应的量叫做数量(物理学中称标量),数量(或标量)只有大小,没有方向。

向量的记法:印刷体记作黑体(粗体)的字母(如a、b、u、v),书写时在字母顶上加一小箭头“→”。[1] 如果给定向量的起点(A)和终点(B),可将向量记作AB(并于顶上加→)。在空间直角坐标系中,也能把向量以数对形式表示,例如xOy平面中(2,3)是一向量。

在物理学和工程学中,几何向量更常被称为矢量。许多物理量都是矢量,比如一个物体的位移,球撞向墙而对其施加的力等等。与之相对的是标量,即只有大小而没有方向的量。一些与向量有关的定义亦与物理概念有密切的联系,例如向量势对应于物理中的势能。

几何向量的概念在线性代数中经由抽象化,得到更一般的向量概念。此处向量定义为向量空间的元素,要注意这些抽象意义上的向量不一定以数对表示,大小和方向的概念亦不一定适用。因此,平日阅读时需按照语境来区分文中所说的"向量"是哪一种概念。不过,依然可以找出一个向量空间的基来设置坐标系,也可以透过选取恰当的定义,在向量空间上介定范数和内积,这允许我们把抽象意义上的向量类比为具体的几何向量。

向量a与向量b的夹角公式是:cos=(ab的内积)/(|a||b|)。

其中设a,b是两个不为0的向量。而向量的夹角就是向量两条向量所成角,而且需要注意的是向量是具有方向性的。也就是说,两个向量夹角的取值范围是:0到90度。

向量的表示方法:

1、代数表示:一般印刷用黑体的小写英文字母(a、b、c等)来表示,手写用在a、b、c等字母上加一箭头(→)表示,如,也可以用大写字母AB、CD上加一箭头(→)等表示。

2、几何表示:向量可以用有向线段来表示。有向线段的长度表示向量的大小,向量的大小,也就是向量的长度。长度为0的向量叫做零向量,记作长度等于1个单位的向量,叫做单位向量。箭头所指的方向表示向量的方向。

3、坐标表示:在平面直角坐标系中,分别取与x轴、y轴方向相同的两个单位向量i,j作为一组基底。a为平面直角坐标系内的任意向量,以坐标原点O为起点P为终点作向量a。

由平面向量基本定理可知,有且只有一对实数(x,y),使得a=xi+yj,因此把实数对(x,y)叫做向量a的坐标,记作a=(x,y)。这就是向量a的坐标表示。其中(x,y)就是点的坐标。向量a称为点P的位置向量。

向量a·向量b=| a || b |cosΘ(Θ为两向量夹角)。

| a |cosΘ叫做向量a在向量b上的投影。

| b |cosΘ叫做向量b在向量a上的投影。

投影 (tóuyǐng),数学术语,指图形的影子投到一个面或一条线上。

证明思路:

正射影二面角的欧几里得射影面积公式。因为射影就是将原图形的长度(三角形中称高)缩放,所以宽度是不变的,又因为平面多边形的面积比=边长的乘积比。所以就是图形的长度(三角形中称高)的比。

那么这个比值应该是平面所成角的余弦值。在两平面中作直角三角形,并使斜边和一直角边垂直于棱,则三角形的斜边和另一直角边就是其多边形的长度比,即为平面多边形的面积比。将此比值放到该平面中的三角形中去运算即可得证。

二个向量的数积有二种表达形式

1、设向量a=(x1,y1),向量b=(x2,y2)

向量a•向量b =|向量a||向量b|cos<向量a,向量b >

|向量a|=√(x1^2+y1^2)

|向量b|=√(x2^2+y2^2)

<向量a,向量b >为二向量的夹角

2,坐标形式:向量a•向量b= x1x2+y1y2

以上就是关于向量a·a等于多少全部的内容,包括:向量a·a等于多少、向量a与向量b的夹角公式是什么、向量a·向量b的表达式是什么等相关内容解答,如果想了解更多相关内容,可以关注我们,你们的支持是我们更新的动力!

转载请注明原文地址:https://juke.outofmemory.cn/read/3800458.html

最新回复(0)