字母a,b,cA,B,C本身不具有任何含义。他们是通过相互之间的比较来体现差异是否显著。
小写字母反应的是5%显著水平,大写字母反应的是1%极显著水平。这里的5%和1%的是表示犯拒绝“假设”的错误可能性。
要根据abc或是ABC比较是否具有显著差异,只需要比较两组代表的字母是否有重叠。例如a,b,c三者之间,各不相同,相互都有显著差异,但是对于ab和a比较或者ab和b比较,各有重复字母,所以两对都不具有显著差异。但是ab和c之间就有显著差异。大写字母同理,只不过大写字母反应的差异显著水平相比小写字母更有说服力。
首先,置信水平和置信度应该是一样的,就是变量落在置信区间的可能性,“置信水平”就是相信变量在设定的置信区间的程度,是个0~1的数,用1-α表示。
置信区间,就是变量的一个范围,变量落在这个范围的可能性是就是1-α。
显著性水平就是变量落在置信区间以外的可能性,“显著”就是与设想的置信区间不一样,用α表示。
显然,显著性水平与置信水平的和为1。
显著性水平为005时,α=005,1-α=095
如果置信区间为(-1,1),即代表变量x在(-1,1)之间的可能性为095。
005和001是比较常用的,但换个数也是可以的,计算方法还是不变。
总之,置信度越高,显著性水平越低,代表假设的可靠性越高,越好。
大于005是不显著。
显著性大于005,证明在百分之五水平上是不显著的,可以看显著性是否小于01的如果小于01,证明在百分之十水平上显著,这个结果是可以用的,证明在百分之十水平上存在显著性影响。
如果显著性大于01证明在百分之十水平上不显著,证明这个结果不是显著性影响因素。
显著性,又称统计显著性(Statistical significance), 是指零假设为真的情况下拒绝零假设所要承担的风险水平,又叫概率水平,或者显著水平。
显著性的含义是指两个群体的态度之间的任何差异是由于系统因素而不是偶然因素的影响。我们假定控制了可能影响两个群体之间差异的所有其他因素,因此,余下的解释就是我们所推断的因素,而这个因素不能够100%保证,所以有一定的概率值,叫显著性水平(Significant level)。
显著性水平的判断:
显著性检验主要看t值和P值,在SPSS显示的结果中,significance是显著性的意思,sig即代表P值,以上结果P均大于005,表明不存在统计学差异。
显著性回答的问题是他们之间是否有关系;相关系数回答的问题是相关程度强弱。
显著性水平与P 值的区别:
1、表示含义不同:
(1)显著性水平是假设检验中的一个概念,是指当原假设为正确时人们却把它拒绝了的概率或风险。
(2)P值即概率,反映某一事件发生的可能性大小。实际上,P值不能赋予数据任何重要性,只能说明某事件发生的几率。
2、取值含义不同:
(1)显著性水平是公认的小概率事件的概率值,必须在每一次统计检验之前确定,通常取α=005或α=001。这表明,当作出接受原假设的决定时,其正确的可能性(概率)为95%或99%。
(2)统计学根据显著性检验方法所得到的P 值,一般以P < 005 为有统计学差异, P<001 为有显著统计学差异,P<0001为有极其显著的统计学差异。其含义是样本间的差异由抽样误差所致的概率小于005 、001、0001。
扩展资料P值计算方法
1、P值是:
1) 一种概率,一种在原假设为真的前提下出现观察样本以及更极端情况的概率。
2) 拒绝原假设的最小显著性水平。
3) 观察到的(实例的)显著性水平。
4) 表示对原假设的支持程度,是用于确定是否应该拒绝原假设的另一种方法。
2、P值的计算:
一般地,用X 表示检验的统计量,当H0为真时,可由样本数据计算出该统计量的值C,根据检验统计量X的具体分布,可求出P值。具体地说:
左侧检验的P值为检验统计量X 小于样本统计值C 的概率,即:P = P{ X < C}
右侧检验的P值为检验统计量X 大于样本统计值C 的概率:P = P{ X > C}
双侧检验的P值为检验统计量X 落在样本统计值C 为端点的尾部区域内的概率的2 倍:P = 2P{ X > C} (当C位于分布曲线的右端时) 或P = 2P{ X< C} (当C 位于分布曲线的左端时) 。若X 服从正态分布和t分布,其分布曲线是关于纵轴对称的,故其P 值可表示为P = P{| X| > C} 。
参考资料来源:百度百科-显著性水平
参考资料来源:百度百科-假设检验中的P值
什么是统计上的显著性
显著性,又称统计显著性(Statistical significance), 是指零假设为真的情况下拒绝零假设所要承担的风险水平,又叫概率水平,或者显著水平。 显著性的含义是指两个群体的态度之间的任何差异是由于系统因素而不是偶然因素的影响。我们假定控制了可能影响两个群体之间差异的所有其他因素,因此,余下的解释就是我们所推断的因素,而这个因素不能够100%保证,所以有一定的概率值,叫显著性水平(Significant level) 扩展资料 统计学的部分检验方法 1、单因素方差分析 用于完全随机设计的多个样本均值间的比较,其统计推断是推断(H0)各样本所代表的各总体均数是否相等。方差分析方法适用于两组均数的比较。方差分析是从观测变量的方差入手,研究诸多控制变量中哪些变量是对观测变量有显著影响的变量。 2、曼惠特尼检验 曼-惠特尼秩和检验:假设两个样本分别来自除了总体均值以外完全相同的两个总体,目的是检验这两个总体的均值是否有显著的差别。(分布存在差异) 3、多样本非参数检验 Kruskal-Wallis检验实质是两独立样本的曼-惠特尼U检验在多个样本下的推广。(秩和检验)Jonckheere-Terpstra检验有点像KW检验后进一步检验位置是否存在递增递减关系。适合不同单位时间的行为序列mmse的比较 检验统计量的构造与曼惠特尼相似,如果一个样本的观测值小于另一个样本的个数较多或较少,那么,多样本的位置之间有大小关系。(J反映了单调的趋势,J越大单调趋势越显著) 参考资料来源:百度百科-显著性
什么是双尾显著性检验
通常,双尾测试用于实验研究,没有强烈的方向期望,或者有两个竞争预测。 例如,当一个理论预测分数增加而另一个理论预测分数减少时,应该使用双尾检验。 应该使用单尾测试的情况包括在进行实验之前进行方向预测,或者强烈要求进行方向预测时。
扩展资料:
什么叫显著性检验
显著性检验的原理就是“小概率事件实际不可能性原理”来接受或否定假设。其基本步骤如下:
第一:提出统计假设H0和HA。
第二:构造统计量t,并根据样本资料计算t值。
第三:根据t分布的自由度,确定理论临界值t005和t001。
P值和显著性有什么区别
显著性水平与P 值的区别: 1、表示含义不同: (1)显著性水平是假设检验中的一个概念,是指当原假设为正确时人们却把它拒绝了的概率或风险。 (2)P值即概率,反映某一事件发生的可能性大小。实际上,P值不能赋予数据任何重要性,只能说明某事件发生的几率。 2、取值含义不同: (1)显著性水平是公认的小概率事件的概率值,必须在每一次统计检验之前确定,通常取α=005或α=001。这表明,当作出接受原假设的决定时,其正确的可能性(概率)为95%或99%。 (2)统计学根据显著性检验方法所得到的P 值,一般以P < 005 为有统计学差异, P<001 为有显著统计学差异,P<0001为有极其显著的统计学差异。其含义是样本间的差异由抽样误差所致的概率小于005 、001、0001。 扩展资料P值计算方法 1、P值是: 1) 一种概率,一种在原假设为真的前提下出现观察样本以及更极端情况的概率。 2) 拒绝原假设的最小显著性水平。 3) 观察到的(实例的)显著性水平。 4) 表示对原假设的支持程度,是用于确定是否应该拒绝原假设的另一种方法。 2、P值的计算: 一般地,用X 表示检验的统计量,当H0为真时,可由样本数据计算出该统计量的值C,根据检验统计量X的具体分布,可求出P值。具体地说: 左侧检验的P值为检验统计量X 小于样本统计值C 的概率,即:P = P{ X < C} 右侧检验的P值为检验统计量X 大于样本统计值C 的概率:P = P{ X > C} 双侧检验的P值为检验统计量X 落在样本统计值C 为端点的尾部区域内的概率的2 倍:P = 2P{ X > C} (当C位于分布曲线的右端时) 或P = 2P{ X C} 。 参考资料来源:百度百科-显著性水平 参考资料来源:百度百科-假设检验中的P值
什么事显著性分析
1概念与意义 在假设检验中,显著性水平显著性水平显著性水平显著性水平((((Significant level,,,,用用用用α表示表示表示表示))))的确定是假设检验中至关重要的问题。 显著性水平是在原假设成立时检验统计量的值落在某个极端区域的概率值。因此,如果取α= 005,如果计算出的p值小于α ,则可认为原假设是一个不可能发生的小概率事件。当然,如果真的发生了,则犯错误的可能性为5%。显然,显著性水平反映了拒绝某一原假设时所犯错误的可能性,或者说, α是指拒绝了事实上正确的原假设的概率。 2通常的取值 α值一般在进行假设检验前由研究者根据实际的需要确定。 常用的取值是005或001。对于前者,相当于在原假设事实上正确的情况下,研究者接受这一假设的可能性为95%;对于后者,则研究者接受事实上正确的原假设的可能性为99%。 显然,降低α值可以减少拒绝原假设的可能性。因此,在报告统计分析结果时,必须给出α值。 3进行统计推断 在进行假设检验时,各种统计软件均会给出检验统计量观测值以及原假设成立时该检验统计量取值的相伴概率(即检验统计量某特定取值及更极端可能值出现的概率,用p表示)。 p值是否小于事先确定的α值,是接受或拒绝原假设的依据。 如果p值小于事先已确定的α值,就意味着检验统计量取值的可能性很小,进而可推断原假设成立的可能性很小,因而可以拒绝原假设。相反,如果p值大于事先已确定的α值,就不能拒绝原假设。 在计算机技术十分发达,以及专业统计软件功能十分强大的今天,计算检验统计量及其相伴概率是一件十分容易的事情。 然而,在20世纪90年代以前,只有服从标准正态分布的检验统计量,人们可以直接查阅事先准备好的标准正态分布函数表,从中获得特定计算结果的相伴概率。而对于的服从t-分布、F-分布、卡方分布或其它特殊的理论分布的检验统计量(大多数的假设检验是这样),人们无法直接计算相伴概率。人们通常查阅各类假设检验的临界值表进行统计推断。这些表格以自由度和很少的几个相伴概率(通常为01、005和001)为自变量,以检验统计量的临界值为函数排列。 在进行统计推断时,人们使用上述临界值表根据事先确定的显著性水平,查阅对应于某一自由度和特定相伴概率的检验统计量的临界值,然后将所计算出的检验统计量与该临界值相比较。如果检验统计量的计算值大于临界值,即实际的相伴概率小于事先规定的显著性水平,便可拒绝原假设。否则,可接受原假设。 4举例 在根据显著性水平进行统计推断时,应注意原假设的性质。 以二元相关分析为例,相关分析中的原假设是“相关系数为零”(即2个随机变量间不存在显著的相关关系)。如果计算出的检验统计量的相伴概率(p值)低于事先给定α值(如005),就可以认为“相关系数为零”的可能性很低, 既2个随机变量之间存在显著的相关关系。 在正态分布检验时,原假设是“样本数据来自服从正态分布的总体”。此时,如果计算出的检验统计量的相伴概率(p值)低于事先给定α值(如005),则表明数据不服从正态分布。只有p值高于α值时,数据才服从正态分布。这与相关分析的假设检验不同。 5作者在描述相关分析结果时常有的失误 仅给出相关系数的值,而不给出显著性水平。这就无法判断2个随机变量间的相关性是否显著。 有时作者不是根据显著性水平判断相关关系是否显著,而是根据相关系数的大小来推断(相关系数越近1,则相关关系越显著)。问题是,相关系数本身是一个基于样本数据计算出的观测值,其本身的可靠性尚需检验。 此外,作者在论文中常常用“显著相关”和“极显著相关”来描述相关分析结果,即认为p值小于005就是显著相关关系(或显著相关),小于001就是极显著相关关系(或极显著相关)。 在假设检验中,只有 “显著”和 “不显著”,没有“极显著”这样的断语。只要计算出的检验统计量的相伴概率(p值)低于事先确定的α值,就可以认为检验结果“显著”(相关分析的原假设是“相关系数为零”,故此处的“显著”实际意味着“相关系数不为零”,或说“2个随机变量间有显著的相关关系”);同样,只要计算出的检验统计量的相伴概率(p值)高于事先确定的α值,就可以认为检验结果“不显著”。 在进行相关分析时,不能同时使用005和001这2个显著性水平来决定是否拒绝原假设,只能使用其中的1个。
若一项假设规定显著性水平为α=005,下面的表述正确的是( )
A.接受H0时的可靠性为95% B.接受H1时的可靠性为95%
C.H0为假时被接受的概率为5% D.H1为真时被拒绝的概率为5%
[答案] A
[解析] 显著性水平α为第Ⅰ类错误的发生概率当原假设为真时拒绝原假设,所犯的错误即为第一类错误,即H0为真时拒绝H0,接受H1的概率为5%,接受H0的概率为95%
以上就是关于请问显著性水平,a、b、c、A、B、C、代表什么全部的内容,包括:请问显著性水平,a、b、c、A、B、C、代表什么、帮我通俗的解释下显著性水平和置信水平、显著性的大小是什么意思呢等相关内容解答,如果想了解更多相关内容,可以关注我们,你们的支持是我们更新的动力!