黄金分割的符号
把一条线段分割为两部分,使较大部分与全长的比值等于较小部分与较大的比值,则这个比值即为黄金分割。其比值是(√5-1):2,近似值为0618,通常用希腊字母Ф表示这个值。
黄金分割将整体一分为二,较大部分与整体部分的比值等于较小部分与较大部分的比值,其比值约为0618,这个比例被公认为是最能引起美感的比例。
扩展资料:
黄金三角形
所谓黄金三角形是一个等腰三角形,其底与腰的长度比为黄金比值,正是因为其腰与边的比为(√5-1)/2而被称为黄金三角形。黄金分割三角形是唯一一种可以用5个而不是4个与其本身全等的三角形来生成与其本身相似的三角形的三角形。由五角形的顶角是36度可得出黄金分割的数值为2sin18度(即2sin(π/10))。
将一个正五边形的所有对角线连接起来,在五角星中可以找到的所有线段之间的长度关系都是符合黄金分割比的,所产生的五角星里面的所有三角形都是黄金分割三角形
黄金分割具有严格的比例性、艺术性、和谐性,蕴藏着丰富的美学价值,这一比值能够引起人们的美感,被认为是建筑和艺术中最理想的比例。
画家们发现,按0618:1来设计的比例,画出的画最优美,在达·芬奇的作品《维特鲁威人》、《蒙娜丽莎》、还有《最后的晚餐》中都运用了黄金分割。
而现今的女性,腰身以下的长度平均只占身高的058,因此古希腊的著名雕像断臂维纳斯及太阳神阿波罗都通过故意延长双腿,使之与身高的比值为0618。建筑师们对数字0618特别偏爱,无论是古埃及的金字塔,还是巴黎的圣母院,或者是近世纪的法国埃菲尔铁塔,希腊雅典的巴特农神庙,都有黄金分割的足迹。
参考资料来源:百度百科-黄金分割
比例为0.618:1。是指分一线段为两部分,使得原来线段的长跟较长的那部分的比为黄金分割的点线段上有两个这样的点
所谓黄金三角形是一个等腰三角形其腰与底的长度比为黄金比值黄金三角形分两种:一种是等腰三角形,两个底角为72°顶角为36°这种三角形既美观又标准这样的三角形的底与一腰之长之比为黄金比:(√5-1)/2另一种也是等腰三角形,两个底角为36°顶角为108°这种三角形一腰与底边之长之比为黄金比:(√5-1)/2
1、任意三角形内角和等于180度。
2、等边三角形三角相等且都等于60度。
3、等腰直角三角形两底角相等且等于45度。
4、黄金三角形两底角等于72度,顶角等于36度。
扩展资料:
三角形的判定:
判定法一:
1、锐角三角形:三角形的三个内角都小于90度。
2、直角三角形:三角形的三个内角中一个角等于90度,可记作Rt△。
3、钝角三角形:三角形的三个内角中有一个角大于90度。
判定法二:
1、锐角三角形:三角形的三个内角中最大角小于90度。
2、直角三角形:三角形的三个内角中最大角等于90度。
3、钝角三角形:三角形的三个内角中最大角大于90度,小于180度。
已知线段AB,经过点B作BD垂直于AB,使BD等于二分之一AB,连接AD,在DA上截取DE=DB,再以点A为圆心,AE为半径在AB上截取AC=AE,则点C即为线段AB黄金分割点,再以BC为底,AC为腰作三角形,则此三角形就是黄金三角形
黄金三角形面积2分之1×底×高。黄金三角形分为两种。
1、两个底角为72°,顶角为36°。三角形既美观又标准这样的三角形的底与一腰之长之比为黄金比:(√5-1)/2。
2、两个底角为36°,顶角为108°。三角形一腰与底边之长之比为黄金比:(√5-1)/2。
把一条线段分割为两部分,使其中一部分与全长之比等于另一部分与这部分之比。其比值是一个无理数,取其前三位数字的近似值是0618。由于按此比例设计的造型十分美丽,因此称为黄金分割,也称为中外比。这是一个十分有趣的数字,我们以0618来近似,通过简单的计算就可以发现:
1/0618=1618
(1-0618)/0618=0618
这个数值的作用不仅仅体现在诸如绘画、雕塑、音乐、建筑等艺术领域,而且在管理、工程设计等方面也有着不可忽视的作用。
让我们首先从一个数列开始,它的前面几个数是:1、1、2、3、5、8、13、21、34、55、89、144…这个数列的名字叫做"菲波那契数列",这些数被称为"菲波那契数"。特点是即除前两个数(数值为1)之外,每个数都是它前面两个数之和。
菲波那契数列与黄金分割有什么关系呢?经研究发现,相邻两个菲波那契数的比值是随序号的增加而逐渐趋于黄金分割比的。即f(n)/f(n-1)-→0618…。由于菲波那契数都是整数,两个整数相除之商是有理数,所以只是逐渐逼近黄金分割比这个无理数。但是当我们继续计算出后面更大的菲波那契数时,就会发现相邻两数之比确实是非常接近黄金分割比的。
一个很能说明问题的例子是五角星/正五边形。五角星是非常美丽的,我们的国旗上就有五颗,还有不少国家的国旗也用五角星,这是为什么?因为在五角星中可以找到的所有线段之间的长度关系都是符合黄金分割比的。正五边形对角线连满后出现的所有三角形,都是黄金分割三角形。
由于五角星的顶角是36度,这样也可以得出黄金分割的数值为2Sin18 。
黄金分割点约等于0.618:1
是指分一线段为两部分,使得原来线段的长跟较长的那部分的比为黄金分割的点。线段上有两个这样的点。
利用线段上的两黄金分割点,可作出正五角星,正五边形。
2000多年前,古希腊雅典学派的第三大算学家欧道克萨斯首先提出黄金分割。所谓黄金分割,指的是把长为L的线段分为两部分,使其中一部分对于全部之比,等于另一部分对于该部分之比。而计算黄金分割最简单的方法,是计算斐波契数列1,1,2,3,5,8,13,21,后二数之比2/3,3/5,4/8,8/13,13/21,近似值的。
黄金分割在文艺复兴前后,经过阿拉伯人传入欧洲,受到了欧洲人的欢迎,他们称之为"金法",17世纪欧洲的一位数学家,甚至称它为"各种算法中最可宝贵的算法"。这种算法在印度称之为"三率法"或"三数法则",也就是我们现在常说的比例方法。
其实有关"黄金分割",我国也有记载。虽然没有古希腊的早,但它是我国古代数学家独立创造的,后来传入了印度。经考证。欧洲的比例算法是源于我国而经过印度由阿拉伯传入欧洲的,而不是直接从古希腊传入的。
因为它在造型艺术中具有美学价值,在工艺美术和日用品的长宽设计中,采用这一比值能够引起人们的美感,在实际生活中的应用也非常广泛,建筑物中某些线段的比就科学采用了黄金分割,舞台上的报幕员并不是站在舞台的正中央,而是偏在台上一侧,以站在舞台长度的黄金分割点的位置最美观,声音传播的最好。就连植物界也有采用黄金分割的地方,如果从一棵嫩枝的顶端向下看,就会看到叶子是按照黄金分割的规律排列着的。在很多科学实验中,选取方案常用一种0618法,即优选法,它可以使我们合理地安排较少的试验次数找到合理的西方和合适的工艺条件。正因为它在建筑、文艺、工农业生产和科学实验中有着广泛而重要的应用,所以人们才珍贵地称它为"黄金分割"。
黄金分割〔Golden Section〕是一种数学上的比例关系。黄金分割具有严格的比例性、艺术性、和谐性,蕴藏着丰富的美学价值。应用时一般取1618 ,就像圆周率在应用时取314一样。
发现历史
由于公元前6世纪古希腊的毕达哥拉斯学派研究过正五边形和正十边形的作图,因此现代数学家们推断当时毕达哥拉斯学派已经触及甚至掌握了黄金分割。
公元前4世纪,古希腊数学家欧多克索斯第一个系统研究了这一问题,并建立起比例理论。
公元前300年前后欧几里得撰写《几何原本》时吸收了欧多克索斯的研究成果,进一步系统论述了黄金分割,成为最早的有关黄金分割的论著。
中世纪后,黄金分割被披上神秘的外衣,意大利数家帕乔利称中末比为神圣比例,并专门为此著书立说。德国天文学家开普勒称黄金分割为神圣分割。
到19世纪黄金分割这一名称才逐渐通行。黄金分割数有许多有趣的性质,人类对它的实际应用也很广泛。最著名的例子是优选学中的黄金分割法或0618法,是由美国数学家基弗于1953年首先提出的,70年代在中国推广。
|a|
+-------------+--------+ -
| | |
| | |
| B | A | b
| | |
| | |
| | |
+-------------+--------+ -
|b|a-b|
通常用希腊字母 表示这个值。
黄金分割奇妙之处,在于其比例与其倒数是一样的。例如:1618的倒数是0618,而1618:1与1:0618是一样的。
确切值为根号5+1/2
黄金分割数是无理数,前面的1024位为:
16180339887 4989484820 4586834365 6381177203 0917980576
2862135448 6227052604 6281890244 9707207204 1893911374
8475408807 5386891752 1266338622 2353693179 3180060766
7263544333 8908659593 9582905638 3226613199 2829026788
0675208766 8925017116 9620703222 1043216269 5486262963
1361443814 9758701220 3408058879 5445474924 6185695364
8644492410 4432077134 4947049565 8467885098 7433944221
2544877066 4780915884 6074998871 2400765217 0575179788
3416625624 9407589069 7040002812 1042762177 1117778053
1531714101 1704666599 1466979873 1761356006 7087480710
1317952368 9427521948 4353056783 0022878569 9782977834
7845878228 9110976250 0302696156 1700250464 3382437764
8610283831 2683303724 2926752631 1653392473 1671112115
8818638513 3162038400 5222165791 2866752946 5490681131
7159934323 5973494985 0904094762 1322298101 7261070596
1164562990 9816290555 2085247903 5240602017 2799747175
3427775927 7862561943 2082750513 1218156285 5122248093
9471234145 1702237358 0577278616 0086883829 5230459264
7878017889 9219902707 7690389532 1968198615 1437803149
9741106926 0886742962 2675756052 3172777520 3536139362
1076738937 6455606060 5922
楼下的用3倍角公式有点麻烦,况且估计你还是个初中生也听不懂他的解释
你应该知道其实黄金三角形它是顶角为36度的等腰三角形或者是顶角为108度的等腰三角形,如下图所示。下面我就来证明黄金三角形为什么腰与底的长度比为(√5-1)/2
证明:过B点做角ABC的角平分线交AC于D点,所以角DBC=36°,故三角形BDC∽三角形ABC,可得到BC/AC=CD/BC,又因为BC=BD=AD(易正明),所以AD/AC=CD/AD,老师说过如果在一个线段上有一个点,是短比长等于长比全,则这个点为黄金分割点,故D为AC的黄金分割点。所以BC/AC=(√5-1)/2。亲,明白了吗?
如果你只是突然有兴趣来问这个题目的话,中间有些步骤也许你没学到,列入相似,黄金分割点的判定。还望见谅,望采纳
以上就是关于Φ在数学中 表示什么意思全部的内容,包括:Φ在数学中 表示什么意思、三角黄金漩涡比例、三角形的各种度数等相关内容解答,如果想了解更多相关内容,可以关注我们,你们的支持是我们更新的动力!