以碗知僧
原文:巍巍古寺在山中,不知寺内几多僧。三百六十四只碗,恰合用尽不差争。三人共食一碗饭,四人共尝一碗羹。请问先生能算者,都来寺内几多僧
大意是说:山上有一座古寺叫都来寺,在这座寺庙里,3个和尚合吃一碗饭,4个和尚合分一碗汤,一共用了364只碗。请问都来寺里有多少个和尚。
《算法统宗》。
:
《算法统宗》全称《新编直指算法统宗》,是中国古代数学名著,程大位著。《算法统宗》17卷,卷1、卷2介绍数学名词、大数、小数和度量衡单位以及珠算盘式图、珠算各种算法口诀等,并举例说明具体用法;卷3至卷12按“九章”次序列举各种应用题及解法;卷13到卷16为“难题”解法汇编;卷17“杂法”,为不能归入前面各类的算法,并列有14个纵横图。书后附录“算经源流”一篇,著录了北宋元丰七年(1084年)以来的数字书目51种。万历二十一年(1593年)刊行。
《算法统宗》是一部应用数学书,是以珠算为主要的计算工具,列有595个应用题的数字计算,都不用筹算方法,而是用珠算演算。评述了珠算规则,完善了珠算口诀,确立了算盘用法,完成了由筹算到珠算的彻底转变。《算法统宗》绝大多数的问题都是从其他数学著作如刘仕隆所著《九章通明算法》(公元1424元)和吴敬的《九章算法比类大全》(公元1450年)等书中摘取出来的。
《算法统宗》从初版至民国时期,出现了很多不同的翻刻本、改编本,民间还有各种抄本流传,对我国民间普及珠算和数学知识起到了很大的作用。明末,日本人毛利重能将《算法统宗》译成日文,开日本“和算”先河。清初,该书又传入朝鲜、东南亚和欧洲,成为东方古代数学的名著。
在中国古代数学的整个发展过程中来看,是一部十分重要的著作。从流传的长久,广泛和深入程度来讲,是任何一部数学著作不能与其相比的。
---百度百科 《算法统宗》
图1是宋代诗人秦观写的一首回环诗。全诗共14个字,写在图中的外层圆圈上。读出来共有4句,每句7个字,写在图中内层的方块里。
这首回环诗,要把圆圈上的字按顺时针方向连读,每句由7个相邻的字组成。第一句从圆圈下部偏左的“赏”字开始读;然后沿着圆圈顺时针方向跳过两个字,从“去” 开始读第二句;再往下跳过三个字,从“酒”开始读第三句;再往下跳过两个字,从“醒”开始读第四句。四句连读,就是一首好诗:
赏花归去马如飞,
去马如飞酒力微。
酒力微醒时已暮,
醒时已暮赏花归。
这四句读下来,头脑里就像放电视一样,闪现出姹紫嫣红的花,的的笃笃的马,颠颠巍巍的人,暮色苍茫的天。
如果继续顺时针方向往下跳过三个字,就回到“赏”字,又可将诗重新欣赏一遍了。
生活中的圆圈,在数学上叫做圆周。一个圆周的长度是有限的,但是沿着圆周却能一圈又一圈地继续走下去,周而复始,永无止境。
回环诗把诗句排列在圆周上,前句的后半,兼作后句的前半,用数学的趣味增强文学的趣味,用数学美衬托文学美。
还是高中数学第一册关于等差等比数列的问题,德国数学家高斯在10岁就会算等差数列前n项和,印度国际象棋发明者深谙等比数列前n项和的威力,惩治了国王。这两个故事就可以使文科生轻松的掌握基本概念,比如,什么是等差数列?什么是等比数列?什么是等比中项、等差中项?如何能准确计算前n项的和等,先看第一个有趣的故事:
高斯是德国数学家、天文学家和物理学家,被誉为历史上伟大的数学家之一,和阿基米德、牛顿并列,同享盛名。高斯1777年4月30日生于不伦瑞克的一个工匠家庭,1855年2月23日卒于格丁根。幼时家境贫困,但聪敏异常,受一贵族资助才进学校受教育。1795~1798年在格丁根大学学习1798年转入黑尔姆施泰特大学,翌年因证明代数基本定理获博士学位。从1807年起担任格丁根大学教授兼格丁根天文台台长直至逝世。
高斯7岁那年,父亲送他进了耶卡捷林宁国民小学,读书不久,高斯在数学上就显露出了常人难以比较的天赋,最能证明这一点的是高斯十岁那年,教师彪特耐尔布置了一道很繁杂的计算题,要求学生把1到 100的所有整数加起来,教师刚叙述完题目,高斯即刻把写着答案的小石板交了上去。彪特耐尔起初并不在意这一举动,心想这个小家伙又在捣乱,但当他发现全班唯一正确的答案属于高斯时,才大吃一惊。而更使人吃惊的是高斯的算法,他发现:第一个数加最后一个数是101,第二个数加倒数第二个数的和也是101,……共有50对这样的数,用101乘以50得到5050。这种算法是教师未曾教过的计算等级数的方法,高斯的才华使彪特耐尔十分激动,下课后特地向校长汇报,并声称自己已经没有什么可教高斯的了。再看第二个故事:
根据历史传说记载,国际象棋起源于古印度,至今见诸于文献最早的记录是在萨珊王朝时期用波斯文写的.据说,有位印度教宗师见国王自负虚浮,决定给他一个教训.他向国王推荐了一种在当时尚无人知晓的游戏.国王当时整天被一群溜须拍马的大臣们包围,百无聊赖,很需要通过游戏方式来排遣郁闷的心情.
国王对这种新奇的游戏很快就产生了浓厚的兴趣,高兴之余,他便问那位宗师,作为对他忠心的奖赏,他需要得到什么赏赐.宗师开口说道:请您在棋盘上的第一个格子上放1粒麦子,第二个格子上放2粒,第三个格子上放4粒,第四个格子上放8粒……即每一个次序在后的格子中放的麦粒都必须是前一个格子麦粒数目的倍数,直到最后一个格子第64格放满为止,这样我就十分满足了. “好吧!”国王哈哈大笑,慷慨地答应了宗师的这个谦卑的请求。然而等到麦子成熟时,国王才发现,按照与宗师的约定,全印度的麦子竟然连棋盘一半的格子数目都不够.这位宗师索要的麦粒数目实际上是天文数字。
等差数列前n项和:S=n(a1+an)÷2=100×(1+100)÷2=5050
等比数列前n项和:S=a1(1-q^n)÷(1-q)=2^65-1
这里一定要明白公式的推理过程,怎么得来的前n项和公式,并熟悉各种变化,总之,用两个有趣的故事就可以把高一的等差等比数列问题让学生掌握住。
1、蝴蝶效应
气象学家Lorenz提出一篇论文,名叫「一只蝴蝶拍一下翅膀会不会在Taxas州引起龙卷风?」论述某系统如果初期条件差一点点,结果会很不稳定,他把这种现象戏称做「蝴蝶效应」。就像我们投掷骰子两次,无论我们如何刻意去投掷,两次的物理现象和投出的点数也不一定是相同的。Lorenz为何要写这篇论文呢?
这故事发生在1961年的某个冬天,他如往常一般在办公室操作气象电脑。平时,他只需要将温度、湿度、压力等气象数据输入,电脑就会依据三个内建的微分方程式,计算出下一刻可能的气象数据,因此模拟出气象变化图。
这一天,Lorenz想更进一步了解某段纪录的後续变化,他把某时刻的气象数据重新输入电脑,让电脑计算出更多的後续结果。当时,电脑处理数据资料的数度不快,在结果出来之前,足够他喝杯咖啡并和友人闲聊一阵。在一小时後,结果出来了,不过令他目瞪口呆。结果和原资讯两相比较,初期数据还差不多,越到後期,数据差异就越大了,就像是不同的两笔资讯。而问题并不出在电脑,问题是他输入的数据差了0000127,而这些微的差异却造成天壤之别。所以长期的准确预测天气是不可能的。
参考资料:
2、动物中的数学“天才”
蜜蜂蜂房是严格的六角柱状体,它的一端是平整的六角形开口,另一端是封闭的六角菱锥形的底,由三个相同的菱形组成。组成底盘的菱形的钝角为109度28分,所有的锐角为70度32分,这样既坚固又省料。蜂房的巢壁厚0073毫米,误差极小。
丹顶鹤总是成群结队迁飞,而且排成“人”字形。“人”字形的角度是110度。更精确地计算还表明“人”字形夹角的一半——即每边与鹤群前进方向的夹角为54度44分8秒!而金刚石结晶体的角度正好也是54度44分8秒!是巧合还是某种大自然的“默契”?
蜘蛛结的“八卦”形网,是既复杂又美丽的八角形几何图案,人们即使用直尺的圆规也很难画出像蜘蛛网那样匀称的图案。
冬天,猫睡觉时总是把身体抱成一个球形,这其间也有数学,因为球形使身体的表面积最小,从而散发的热量也最少。
真正的数学“天才”是珊瑚虫。珊瑚虫在自己的身上记下“日历”,它们每年在自己的体壁上“刻画”出365条斑纹,显然是一天“画”一条。奇怪的是,古生物学家发现3亿5千万年前的珊瑚虫每年“画”出400幅“水彩画”。天文学家告诉我们,当时地球一天仅219小时,一年不是365天,而是400天。(生活时报)
3、麦比乌斯带
每一张纸均有两个面和封闭曲线状的棱(edge),如果有一张纸它有一条棱而且只有一个面,使得一只蚂蚁能够不越过棱就可从纸上的任何一点到达其他任何一点,这有可能吗事实上是可能的只要把一条纸带半扭转,再把两头贴上就行了。这是德国数学家麦比乌斯(MbiusAF 1790-1868)在1858年发现的,自此以後那种带就以他的名字命名,称为麦比乌斯带。有了这种玩具使得一支数学的分支拓朴学得以蓬勃发展。
4、数学家的遗嘱
阿拉伯数学家花拉子密的遗嘱,当时他的妻子正怀着他们的第一胎小孩。“如果我亲爱的妻子帮我生个儿子,我的儿子将继承三分之二的遗产,我的妻子将得三分之一;如果是生女的,我的妻子将继承三分之二 的遗产,我的女儿将得三分之一。”。
而不幸的是,在孩子出生前,这位数学家就去世了。之后,发生的事更困扰大家,他的妻子帮他生了一对龙凤胎,而问题就发生在他的遗嘱内容。
如何遵照数学家的遗嘱,将遗产分给他的妻子、儿子、女儿呢?
5、火柴游戏
一个最普通的火柴游戏就是两人一起玩,先置若干支火柴於桌上,两人轮流取,每次所取的数目可先作一些限制,规定取走最後一根火柴者获胜。
规则一:若限制每次所取的火柴数目最少一根,最多三根,则如何玩才可致胜?
例如:桌面上有n=15根火柴,甲﹑乙两人轮流取,甲先取,则甲应如何取才能致胜?
为了要取得最後一根,甲必须最後留下零根火柴给乙,故在最後一步之前的轮取中,甲不能留下1根或2根或3根,否则乙就可以全部取走而获胜。如果留下4根,则乙不能全取,则不管乙取几根(1或2或3),甲必能取得所有剩下的火柴而赢了游戏。同理,若桌上留有8根火柴让乙去取,则无论乙如何取,甲都可使这一次轮取後留下4根火柴,最後也一定是甲获胜。由上之分析可知,甲只要使得桌面上的火柴数为4﹑8﹑12﹑16等让乙去取,则甲必稳操胜券。因此若原先桌面上的火柴数为15,则甲应取3根。(∵15-3=12)若原先桌面上的火柴数为18呢?则甲应先取2根(∵18-2=16)。
规则二:限制每次所取的火柴数目为1至4根,则又如何致胜?
原则:若甲先取,则甲每次取时,须留5的倍数的火柴给乙去取。
通则:有n支火柴,每次可取1至k支,则甲每次取後所留的火柴数目必须为k+1之倍数。
规则三:限制每次所取的火柴数目不是连续的数,而是一些不连续的数,如1﹑3﹑7,则又该如何玩法?
分析:1﹑3﹑7均为奇数,由於目标为0,而0为偶数,所以先取者甲,须使桌上的火柴数为偶数,因为乙在偶数的火柴数中,不可能再取去1﹑3﹑7根火柴後获得0,但假使如此也不能保证甲必赢,因为甲对於火柴数的奇或偶,也是无法依照己意来控制的。因为〔偶-奇=奇,奇-奇=偶〕,所以每次取後,桌上的火柴数奇偶相反。若开始时是奇数,如17,甲先取,则不论甲取多少(1或3或7),剩下的便是偶数,乙随後又把偶数变成奇数,甲又把奇数回覆到偶数,最後甲是注定为赢家;反之,若开始时为偶数,则甲注定会输。
通则:开局是奇数,先取者必胜;反之,若开局为偶数,则先取者会输。
规则四:限制每次所取的火柴数是1或4(一个奇数,一个偶数)。
分析:如前规则二,若甲先取,则甲每次取时留5的倍数的火柴给乙去取,则甲必胜。此外,若甲留给乙取的火柴数为5之倍数加2时,甲也可赢得游戏,因为玩的时候可以控制每轮所取的火柴数为5(若乙取1,甲则取4;若乙取4,则甲取1),最後剩下2根,那时乙只能取1,甲便可取得最後一根而获胜。
通则:若甲先取,则甲每次取时所留火柴数为5之倍数或5的倍数加2。 6、韩信点兵
韩信点兵又称为中国剩余定理,相传汉高祖刘邦问大将军韩信统御兵士多少,韩信答说,每3人一列余1人、5人一列余2人、7人一列余4人、13人一列余6人……。刘邦茫然而不知其数。
我们先考虑下列的问题:假设兵不满一万,每5人一列、9人一列、13人一列、17人一列都剩3人,则兵有多少?
首先我们先求5、9、13、17之最小公倍数9945(注:因为5、9、13、17为两两互质的整数,故其最小公倍数为这些数的积),然後再加3,得9948(人)。
中国有一本数学古书「孙子算经」也有类似的问题:「今有物,不知其数,三三数之,剩二,五五数之,剩三,七七数之,剩二,问物几何?」
答曰:「二十三」
术曰:「三三数之剩二,置一百四十,五五数之剩三,置六十三,七七数之剩二,置三十,并之,得二百三十三,以二百一十减之,即得。凡三三数之剩一,则置七十,五五数之剩一,则置二十一,七七数之剩一,则置十五,即得。」
孙子算经的作者及确实着作年代均不可考,不过根据考证,着作年代不会在晋朝之後,以这个考证来说上面这种问题的解法,中国人发现得比西方早,所以这个问题的推广及其解法,被称为中国剩余定理。中国剩余定理(Chinese Remainder Theorem)在近代抽象代数学中占有一席非常重要的地位。
民间故事是民间文学中的重要门类之一,故事大全我为大家带来一篇数学家的故事300字,快来看看吧
一次维纳乔迁,妻子熟悉维纳的方方面面,搬家前一天晚上再三提醒他。她还找了一张便条,上面写着新居的地址,并用新居这天早,何老头就把那顶"活轿"整好了,如不出意外,金家很快就会有两个属"虎"的人来抬轿了,他们会是谁呢?的房门钥匙换下旧房的钥匙。第二天维纳带着纸条和钥匙上班去了。白天恰有一人问他一个数学问方生听了心花怒放,奔过来,捉住玉娘的小手吻了几吻。玉娘早粉面含春,心里阵狂跳,于是两个人相拥着坐了,情话绵绵。自此,方生每晚来会玉娘,说不尽的快活。玉娘连日来只图欢娱,渐渐体力不支,形神憔悴。陈氏还以为女儿身体不舒服,买了药来煎给她服。题,维纳把答案写对相爱的人,如今却阴阳两隔,怎能让人不为之痛心。在那张纸条的背面递给人家。刘墉上前步回管道:行人赶到水湾村花家时,已是黄昏时分。花韩亲自给孟娇娘安排了房间,让女佣带着孟娇娘前去洗漱,并准备了新装。"万岁爷,当务之急,还是得减税,朝庭再拨救灾金下去,这样定能帮他们度过旱情。"晚上维纳习惯性待见到张果老春秋时期,晋公子重耳为逃避迫害而流亡国外,流亡途中,在处渺无人烟的地方,又累又饿,再也无力站起来。随臣找了半天也找不到点吃的,正在大家万分焦急的董启兰连连摇头:"我向只会开保胎方,从来没听说过什么催产方!先生请回!",随臣介子推走到僻静处,从自己的大腿上割下了块肉,煮了碗肉汤渐渐恢复了精神,当重耳发现肉是介子推人自己腿割下的时候,流下了眼泪。时,却见此人老态龙钟,顿生疑惑:"先生是得道之人,为何坏公元年间,郑国迁都郑地,即现在的新郑,而后郑庄公继位,郑国达到鼎盛,郑庄公更是号称春秋小霸王。我们的故事就发生在郑庄公年间。发疏齿落,老态龙钟? "张果老说:"我是齿落发稀时得道,只好这副光景。陛下若看着不顺眼,我不如把它们尽去了好。"于是便在殿前拔去鬓发,击落牙齿,玄宗有点害怕,忙叫人扶张果老去休息。地回到旧居。他很吃惊,家里没人。从窗子望进去,家具也不见了。掏出钥匙开门,发现根本对不上齿。于是使劲拍了几下门,随后在院卫王介可能当场就晕过去了,刚剑家后不久就死了,这就是典故"看杀卫王介"的由来。子里踱步。突然发现街上跑来一小女孩。维纳对她讲:"小姑娘,我真不走运。我找不到家了,我的钥匙插不进去。"
小女孩说道:"爸"是谁,是谁把我的女儿逗乐了?"爸,没错。妈妈让我来找你。"
篇二:数学家的故事300字波兰伟大的数学家伯格曼(stefanbergman,1898-1977年)总在考虑数学问题
。有一次伯格曼去西海岸参加一个学术会议,他的一个研究生正好要到那里旅行结婚,他们同乘一辆长途汽车。这位学生知道他的毛病,事先商量好,在车上不谈数学问题。伯格曼满口答应。伯格曼坐在最后一排,这对年轻夫妇恰巧坐在他前一排。10分钟过后,伯格曼脑子里突然有了灵感,不自觉地凑上前去,斜靠着学生的座位,开始讨论起数学。再过一会儿,那位新娘不得不挪到后排座位,伯格曼则紧挨着他的学生坐下来。一路上他们兴高采烈地谈论着数学。
幸好,这对夫妇后来婚姻美满但是金苹果直映入公主的眼里,她异常激动,很想要那个苹果。她们都认为,让那个男孩躺在她脚头没有什么危险,因为他睡起觉来简直像个死猪样。,有一个儿子,还成了著名数学家。
读从前有户农家,有日,家中突然起火,家口跑出门来,哭天喊地,同村的人纷纷提了水桶,来帮他灭火,可是琉熊熊,哪里救得及?完本故事,你有什么收获呢?如果你对民间故事很感兴趣,欢迎收藏并订阅
数学家
“周自相乘,以高乘之,十二而之”出自《九章算术》
您说的应该是“周自相乘,以高乘之,十二而之”吧。《九章算术》中记载的圆柱体积的计算方法是“周自相乘,以高乘之,十二而一”,也就是底面周长的平方乘高,再除以12。
《九章算术》(TheNineChaptersontheMathematicalArt)是《算经十书》中最重要的一部著作。《九章算术》内容十分丰富,全书总结了战国、秦、汉时期的数学成就。它是一本综合性的历史著作,是当时世界上最简练有效的应用数学,它的出现标志中国古代数学形成了完整的体系。
阿基米德(约公元前287-212年)——希腊物理学家、数学家。
阿基米德的父亲是一位天文学家和数学家,所以他从小就受到良好的教育,特别喜爱数学。有一次,国王请他去测定金匠刚刚为其做好的王冠是纯金的还是掺有银子的混合物,并且告诫他不得毁坏王冠。起初,阿基米德茫然不知所措。直到有一天,当自己泡在一满盆洗澡水里时,溢出水量的体积等于他身体浸入水中的那部分体积。那么,如果把王冠浸入水中,根据水面上升的情况算出王冠的体积与等重量金子的体积相等,就说明王冠是纯金的;假如掺有银子的话,王冠的体积就会大一些。他兴奋地从浴盆中跃出,全身赤条条地奔向皇宫,大喊着:"我找到了!找到了!"他为此而发明了浮力原理。除此之外,他还发现了着名的杠杆原理。伴随着这一发明,还产生了一句众所周知的名言:"只要给我一个支点,我就能撬动地球。"
在阿基米德的老年岁月里,他的祖国与罗马发生战争,当他住的城市遭劫掠时,阿基米德还专心地研究他在沙地上画的几何图形,凶残的罗马士兵刺倒了这位75岁的老人,伟大的科学家扑倒在鲜血染红了的几何图形上……
1910年11月12日出生于江苏省金坛县一个小商人家庭,身高165米,父亲华瑞栋,开一爿小杂货铺,母亲是一位贤惠的家庭妇女。他12岁从县城仁劬小学毕业后,进入金坛县立初级中学学习。1925年初中毕业后,因家境贫寒,无力进入高中学习,只好到黄炎培在上海创办的中华职业学校学习会计。不到一年,由于生活费用昂贵,被迫中途辍学,回到金坛帮助父亲料理杂货铺。
在单调的站柜台生活中,他开始自学数学。1927年秋,和吴筱之结婚。1929年,华罗庚受雇为金坛中学庶务员,并开始在上海《科学》等杂志上发表论文。1929年冬天,他得了严重的伤寒症,经过近半年的治理,病虽好了,但左腿的关节却受到严重损害,落下了终身残疾,走路要借助手杖。
其实华罗庚读初中时,一度功课并不好,有时数学还考不及格。时在金坛中学任教的华罗庚的数学老师,我国著名教育家、翻译家王维克(1900年出生,金坛人)发现华罗庚虽贪玩,但思维敏捷,数学习题往往改了又改,解题方法十分独特别致。一次,金坛中学的老师感叹学校“差生”多,没有“人才”时,王维克道:“不见得吧,依我看,华罗庚同学就是一个!”“华罗庚?”一位老师笑道:“你看看他那两个像蟹爬的字吧,他能算个‘人才’吗?”王维克有些激动地说:“当然,他成为大书法家的希望很小,可他在数学上的才能你怎么能从他的字上看出来呢?要知道金子被埋在沙里的时候,粗看起来和沙子并没有什么两样,我们当教书匠的一双眼睛,最需要有沙里淘金的本领,否则就会埋没人才啊!”
1930年春,他的论文《苏家驹之代数的五次方程式解法不能成立的理由》在上海《科学》杂志上发表。当时在清华大学数学系任主任的熊庆来教授看到后,即多方打听并推荐他到清华大学数学系当图书馆助理员。1931年秋冬之交,华罗庚进了清华园。
华罗庚在清华大学一面工作一面学习。他用了两年的时间走完了一般人需要八年才能走完的道路,1933年被破格提升为助教,1935 年成为讲师。1936年,他经清华大学推荐,派往英国剑桥大学留学。他在剑桥的两年中,把全部精力用于研究数学理论中的难题,不愿为申请学位浪费时间。他的研究成果引起了国际数学界的注意。1938年回国,受聘为西南联合大学教授。从1939年到1941年,他在极端困难的条件下,写了20多篇论文,完成了他的第一部数学专著《堆垒素数论》。在闻一多先生的影响下,他还积极参加到当时如火如荼的抗日民主爱国运动之中。《堆叠素数论》后来成为数学经典名著,1947年在苏联出版俄文版,又先后在各国被翻译出版了德文、英文、匈牙利和中文版。
1946年2月至5月,他应邀赴苏联访问。 1946年,当时的国民政府也想搞原子弹, 于是选派华罗庚、吴大猷、曾昭抡三位大名鼎鼎的科学家赴美考察。9月和李政道,朱光亚等离开上海前往美国,先在普林斯顿高等研究所担任访问教授,后又被伊利诺大学聘为终身教授。
■回国建设时期
1949年新中国成立,华罗庚感到无比兴奋,决心偕家人回国。他们一家五人乘船离开美国,1950年2月到达香港。他在香港发表了一封致留美学生的公开信,信中充满了爱国激情,鼓励海外学子回来为新中国服务。3月11日新华社播发了这封信。1950年3月16日,华罗庚和夫人、孩子乘火车抵达北京。
华罗庚回到了清华园,担任清华大学数学系主任。接着,他受中国科学院院长郭沫若的邀请开始筹建数学研究所。1952年7月,数学所成立,他担任所长。他潜心为新中国培养数学人才,王元、陆启铿、龚升、陈景润、万哲先等在他的培养下成为著名的数学家。
回国后短短的几年中,他在数学领域里的研究硕果累累。他写成的论文《典型域上的多元复变函数论》于1957年1月获国家发明一等奖,并先后出版了中、俄、英文版专著;1957年出版《数论导引》; 1959年莱比锡首先用德文出版了《指数和的估计及其在数论中的应用》,又先后出版了俄文版和中文版;1963年他和他的学生万哲先合写的《典型群》一书出版。他为培养青少年学习数学的热情,在北京发起组织了中学生数学竞赛活动,从出题、监考、阅卷,都亲自参加,并多次到外地去推广这一活动。他还写了一系列数学通俗读物,在青少年中影响极大。他主张在科学研究中要培养学术空气,开展学术讨论。他发起创建了我国计算机技术研究所,也是我国最早主张研制电子计算机的科学家之一。
华罗庚以高度的爱国热情参加新中国的各项社会活动。 1953年,他参加中国科学家代表团赴苏联访问。他作为中国数学家代表,出席了在匈牙利召开的二战后首次世界数学家代表大会。他还出席了亚太和平会议、世界和平理事会。 1958年他和郭沫若一起率中国代表团出席在新德里召开的“在科学、技术和工程问题上协调”的会议。
1958年,华罗庚被任命为中国科技大学副校长兼应用数学系主任。在继续从事数学理论研究的同时,他努力尝试寻找一条数学和工农业实践相结合的道路。经过一段实践,他发现数学中的统筹法和优选法是在工农业生产中能够比较普遍应用的方法,可以提高工作效率,改变工作管理面貌。于是,他一面在科技大学讲课,一面带领学生到工农业实践中去推广优选法、统筹法。1964年初,他给毛主席写信,表达要走与工农相结合道路的决心。同年3月18日,毛主席亲笔回函:“诗和信已经收读。壮志凌云,可喜可贺。”他写成了《统筹方法平话及补充》、《优选法平话及其补充》,亲自带领中国科技大学师生到一些企业工厂推广和应用“双法”,为工农业生产服务。“夏去江汉斗酷暑,冬往松辽傲冰霜”。这就是他当时的生活写照。1965年毛主席再次写信给他,祝贺和勉励他“奋发有为,不为个人而为人民服务”。
■文革斗争时期
“文革”开始后,正在外地推广“双法”的华罗庚被急电召回北京写检查,接受批判。周恩来总理得知这一情况后指示:“统筹方法还是要搞的。”1970年4月,国务院根据周总理的指示,邀请了七个工业部的负责人听华罗庚讲优选法、统筹法。这之后,他凭个人的声誉,到各地借调了得力的人员组建“推广优选法、统筹法小分队”,亲自带领小分队到全国各地去推广“双法”,为工农业生产服务。小分队共去过26个省、自治区和直辖市,所到之处,都掀起了科学实验与实践的群众性活动,取得了很大的经济效益和社会效益。他的工作受到胡耀邦、叶剑英等同志的关心和支持。
1975年他在大兴安岭推广“双法”时,因积劳成疾,第一次患心肌梗塞。 粉碎“四人帮”后,他被任命为中国科学院副院长。他多年的研究成果《从单位圆谈起》、《数论在近似分析中的应用》(与王元合作)、《优选学》等专著也相继正式出版了。 1979年5月,他在和世界隔绝了10多年以后,到西欧作了七个月的访问,以“下棋找高手,弄斧到班门”的心愿,把自己的数学研究成果介绍给国际同行。
■晚年大家时期
1982年11月,他第二次患心肌梗塞症。
1983年10月,他应美国加州理工学院邀请,赴美作为期一年的讲学活动。在美期间,他赴意大利里亚利特市出席第三世界科学院成立大会,并被选为院士;1984年4月,他在华盛顿出席了美国科学院授予他外籍院士的仪式,他是第一位获此殊荣的中国人。1985年4月,他在全国政协六届三次会议上,被选为全国政协副主席。
华罗庚担任的社会工作很多。他是第一至第六届全国人大常委会委员;他于1952年9月加入民盟,1979年当选为民盟中央副主席。他1958年就提出了加入中国***的请求,1979年6月被批准加入中国***,在答邓颖超同志的勉励时他表示:“横刀哪顾头颅白,跃进紧傍青壮人,不负党员名。”
1985年6月3日,他应日本亚洲文化交流协会邀请赴日本访问。6月12日下午4时,他在东京大学数理学部讲演厅向日本数学界作讲演,讲题是《理论数学及其应用》。下午5时15分讲演结束,他在接受献花的那一刹那,身体突然往后一仰,倒在讲坛上,晚10时9分宣布他因患急性心肌梗塞逝世。
华罗庚一生在数学上的成就是巨大的,他的数论、矩阵几何学、典型群、自守函数论、多个复变函数论、偏微分方程及高维数值积分等很多领域都作出了卓越的贡献。他之所以有这样大的成就,主要在于他有一颗赤诚的爱国报国之心和坚忍不拔的创新精神。正因为如此,他才能够毅然放弃美国终身教授的优厚待遇,迎接祖国的黎明;他才能够顶住非议和打击,奋发有为,不为个人而为人民服务,成为蜚声中外的杰出科学家。
华罗庚的夫人
华罗庚是驰名中外的数学家,其斐然成绩早为世人所推崇。而每当人们问及他的成功之道时,他总是盛赞他的夫人吴筱之,并感叹道:"她是无名英雄,我的整个事业,是与她分不开的!"几十年来,吴筱之在华罗庚的生活和事业上,起着重要的作用。
一、吴筱之18岁那年,经人说合,嫁给了同乡的同龄人华罗庚。 婚后不到几个月,瘟疫病蔓延江苏金坛县,夺去了婆婆的性命。不多久,华罗庚也染上了瘟疫,每天处于昏迷状态。这时,吴筱之将吃奶的女儿交给母亲去照管,自己日夜守候在丈夫身旁。由于婆婆刚刚过世,女儿又新来人间,加上丈夫身患重病,使得本来就不富足的华罗庚家中更为困难。为此,吴筱之背着家人,将结婚时心爱的饰物拿到当铺,换钱给丈夫治病买药。也许是爱情的力量增强了华罗庚战胜病魔的决心和勇气,他终于从死亡线上挣扎出来。可惜的是,这场病使他的一条腿成了残疾。
二、华罗庚病愈之后,身体虽残,意志弥坚。他立志献身于祖国的科研事业,更加刻苦地钻研起数学来。为给丈夫提供方便,即使有时到了无米下锅的境地,她也是一个人设法解决,从不让丈夫为之分心。 不久,华罗庚发表了《苏家驹之代数五次方程式解法不能成立的理由》的论文,得到了清华大学熊庆来教授的赏识,并邀请他去清华执教。吴筱之自然也想去北京居住,但想到丈夫每月薪水太低,难以维持一家三口人的生活;而且她又身怀六甲,生孩子更会增加许多费用;何况公公年迈多病,需人照料。于是,取消了随夫进京的打算,挑起了沉重的家务担子。
三、1936年夏,25岁的华罗庚被保送到英国剑桥大学留学。第二年,日本帝国主义发动了"七七事变"。华罗庚得知日本帝国主义的侵略行径后义愤填膺,他毅然放弃了在英国深造的机会,满怀抗日救国的热忱回到了祖国,并到昆明西南联合大学去执教。于是,一家四口久别重逢,开始再次团圆。 由于华罗庚工作极忙,无暇给子女以更多的关心和教育,于是这一重任又落在了吴筱之的肩上。
四、 新中国成立后,华罗庚一家迁居到了北京。虽然生活条件得到了改善,但吴筱之勤俭持家、相夫教子却未变。党的十一届三中全会以后,华罗庚精神振奋,报国之心愈烈。同时,各项工作也更加繁忙起来。吴筱之不仅操持家务,还帮他抄写论文和书信。一旦客人来家,吴筱之便代他承担起待客的各种杂务;而当他外出开会、办公时,又总是将他的拐杖、香烟和帽子拿出来,一递到他手上。 鉴此,华罗庚的亲朋好友曾问吴筱之为什么对丈夫关心得如此周到,她的回答是:"我能帮他一点忙,他就少操一点心,为国家多出点力。" 他们有三个儿子华俊东、华陵、华光,三 个女儿华顺、华苏与华蜜。
华罗庚的老师
熊庆来,是华罗庚的老师,是中国近代数学的先驱。1893—1969,字迪之,云南人。曾经留学比利时、法国,并且在法国获得了博士学位。他在函数论方面的研究取得巨大的成果,定义了一个“无穷级函数”,被国际上采用并称作熊氏无穷数。熊庆来先生非常热爱教育事业,对于培养中国的科学人才相当的热心。早年他在东南大学当教授的时候,发现一个叫刘光的学生相当有才华,变经常指导他读书、研究,后来还和另一位教过刘光的教授一起资助他出国留学深造,甚至是卖掉自己身上的衣服给他寄钱。后来这个刘光成为了著名的物理学家。后来熊庆来先生来到清华大学担任数学系主任,在学术杂志上看到 华罗庚的名字,了解到华罗庚的自学经历和数学才华后,毅然打破常规,请只有初中文化程度才19岁的华罗庚到清华大学。70多高龄半身不遂的时候,还抱病指导两个研究生杨乐和张广厚,他们后来都成为很有成就的年轻数学家。
主要成就
中国解析数论、矩阵几何学、典型群、自安函数论等多方面研究的创始人和开拓者。在国际上以华氏命名的数学科研成果就有“华氏定理”、“怀依—华不等式”、“华氏不等式”、“普劳威尔—加当华定理”、“华氏算子”、“华—王方法”等。华罗庚同志一生为我们留下了十部专著:《堆垒素数论》、《指数和的估价及其在数论中的应用》、《多复变函数论中的典型域的调和分析》、《数论导引》、《典型群》(与万哲先合著)、《从单位圆谈起》、《数论在近似分析中的应用》(与王元合著)、《二阶两个自变数两个未知函数的常系数线性偏微分方程组》(与他人合著)、《优选学》及《计划经济范围最优化的数学理论》,其中八部为国外翻译出版,有些已列入本世纪数学的经典著作之列。 此外,还有学术论文200余篇,科普作品《优选法评话及其补充》、《统筹法评话及补充》等,辑为《华罗庚科普著作选集》。
在代数方面,证明了历史长久遗留的一维射影几何的基本定理;给出了体的正规子体一定包含在它的中心之中这个结果的一个简单而直接的证明,被称为嘉当-布饶尔-华定理。其专著《堆垒素数论》系统地总结、发展与改进了哈代与李特尔伍德圆法、维诺格拉多夫三角和估计方法及他本人的方法,发表40余年来其主要结果仍居世界领先地位,先后被译为俄、匈、日、德、英文出版,成为20世纪经典数论著作之一。其专著《多个复变典型域上的调和分析》以精密的分析和矩阵技巧,结合群表示论,具体给出了典型域的完整正交系,从而给出了柯西与泊松核的表达式。这项工作在调和分析、复分析、微分方程等研究中有着广泛深入的影响,曾获中国自然科学奖一等奖。倡导应用数学与计算机的研制,曾出版《统筹方法平话》、《优选学》等多部著作并在中国推广应用。与王元教授合作在近代数论方法应用研究方面获重要成果,被称为“华-王方法”。在发展数学教育和科学普及方面做出了重要贡献。发表研究论文200多篇,并有专著和科普性著作数十种。
华罗庚的妙联
一九五三年,科学院组织出国考察团,由著名科学家钱三强任团长。团员有华罗庚、张钰哲、赵九章、朱冼等许多人。途中闲暇无事,华老题出上联一则:“三强韩、赵、魏,”求对下联。
在“对例”中,这是属于难对的一类。远在北宋时期,有人以“三光日月星”的上联求对,那时大文学家苏东坡以“四诗风雅颂”而解决了这个疑难。到了清代,著名书画家郑板桥的有人赠送郑板桥对联一幅,打开一看只有上联,写的是“三绝诗书画”几字,以此来刻画郑板桥的贡献,是再贴切也没有了,但下联确颇难对。后来郑板桥有人以“一官归去来”的下联而解决了这个难题。这里的“一官”有“归去来”的三重性,这就既解决了数字联的困难,又引用了陶渊明的《归去来辞》的典故,而推崇了郑氏与诗书画偕隐的突出性格,板桥友人的对法比苏东坡又前进了一步。
但是华老提出的上联却又有了新的发展。这里的“三强”说明是战国时期韩、赵、魏三个战国,却又隐语着代表团团长钱三强同志的名字,这就不仅要解决数字联的传统困难,而且要求在下联中嵌入另一位科学家的名字。隔了一会儿,华老见大家还无下联,便将自己的下联揭出:九章勾、股、弦。《九章》是我国古代著名的数学著作。可是,这里的“九章”又恰好是代表团另一位成员、大气物理学家赵九章的名字。华老的妙对使满座为之倾倒,因为又开辟了数字联的新的“对例”。
1980年华罗庚教授在苏州指导统筹法和优选法时写过以下对联:
观棋不语非君子,互相帮助;
举手有悔大丈夫,纠正错误。
警言
锦城虽乐,不如回故乡;乐园虽好 ,非久留之地。归去来兮。
人家帮我,永志不忘,我帮人家,莫记心上。
在寻求真理的长征中,惟有学习,不断地学习,勤奋地学习,有创造性地学习,才能越重山,跨峻岭。
日累月积见功勋,山穷水尽惜寸阴。
时间是由分秒积成的,善于利用零星时间的人,才会做出更大的成绩来。
壮士临阵决死哪管些许伤痕,向千年老魔作战,为百代新风斗争。慷慨掷此身。
自学,不怕起点低,就怕不到底。
科学成就是由一点一滴积累起来的,惟有长期的积聚才能由点滴汇成大海。
科学的灵感,决不是坐等可以等来的。如果说,科学上的发现有什么偶然的机遇的话,那么这种“偶然的机遇”只能给那些学有素养的人,给那些善于独立思考的人,给那些具有锲而不舍的精神的人,而不是给懒汉。
科学是老老实实的学问,不可能靠运气来创造发明,对一个问题的本质不了解,就是碰上机会也是枉然。入宝山而空手回,原因在此。
科学是实事求是的学问,来不得半点虚假。
我想,人有两个肩膀,应该同时发挥作用,我要用一个肩挑着送货上门的担子,把科学知识和科学工具送到工人师傅手里;另一个肩膀可以作人梯,让青年们踏着攀登科学的更高一层山峰。
天才是不足恃的,聪明是不可靠的,要想顺手拣来的伟大科学发明是不可想象的。
学习和研究好比爬梯子,要一步一步地往上爬,企图一脚跨上四五步,平地登天,那就必须会摔跤了。
任何一个人,都要必须养成自学的习惯,即使是今天在学校的学生,也要养成自学的习惯,因为迟早总要离开学校的!自学,就是一种独立学习,独立思考的能力。行路,还是要靠行路人自己。
要循序渐进!我走过的道路,就是一条循序渐进的道路。
独立思考能力,对于从事科学研究或其他任何工作,都是十分必要的。在历史上,任何科学上的重大发明创造,都是由于发明者充分发挥了这种独创精神。
见面少叙寒暄话,多把艺术谈几声。
科学是老老实实的学问,搞科学研究工作就要采取老老实实、实事求是的态度,不能有半点虚假浮夸。不知就不知,不懂就不懂,不懂的不要装懂,而且还要追下去,不懂,不懂在什么地方;懂,懂在什么地方。老老实实的态度,首先就是要扎扎实实地打好基础。科学是踏实的学问,连贯性和系统性都很强,前面的东西没有学好,后面的东西就上不去;基础没有打好。搞尖端就比较困难。我们在工作中经常遇到一些问题解决不了,其中不少是由于基础未打好所致。一个人在科学研究和其他工作上进步的快慢,往往和他的基础有关。
我们最好把自己的生命看做前人生命的延续,是现在共同生命的一部分,同时也后人生命的开端。如此延续下去,科学就会一天比一天灿烂,社会就会一天比一天更美好。
科学的灵感,决不是坐等可以等来的。如果说,科学上的发现有什么偶然的机遇的话,那么这种“偶然的机遇”只能给那些学有素养的人,给那些善于独立思考的人,给那些具有锲而不舍的精神的人,而不会给懒汉。
“难”也是如此,面对悬崖峭壁,一百年也看不出一条缝来,但用斧凿,能进一寸进一寸,得进一尺进一尺,不断积累,飞跃必来,突破随之。
天才是不足恃的,聪明是不可靠的,要想顺手拣来的伟大拉学发明是不可想象的。
科学上没有平坦的大道,真理长河中有无数礁石险滩。只有不畏攀登的采药者,只有不怕巨浪的弄潮儿,才能登上高峰采得仙草,深入水底觅得骊珠。
钻研然而知不足,虚心是从知不足而来的。虚伪的谦虚,仅能博得庸俗的掌声,而不能求得真正的进步。
凡是较有成就的科学工作者,毫无例外地都是利用时间的能手,也都是决心在大量时间中投入大量劳动的人。
以上就是关于以碗知僧是哪个数学典故全部的内容,包括:以碗知僧是哪个数学典故、去马如飞酒力微代的数学典故、请问哪位有关于高一数学数列求和的故事或典故等相关内容解答,如果想了解更多相关内容,可以关注我们,你们的支持是我们更新的动力!