中国发展门户网讯 随着新一代信息技术的迅猛发展和深入应用,数据的数量、规模不断扩大,数据已日益成为土地、资本之后的又一种重要的生产要素,和各个国家和地区争夺的重要资源,谁掌握数据的主动权和主导权,谁就能赢得未来。奥巴马政府将数据定义为“未来的新石油”,认为一个国家拥有数据的规模、活性及解释运用的能力将成为综合国力的重要组成部分,对数据的占有和控制将成为继陆权、海权、空权之外的另一个国家核心权力。此后,一个全新的概念——大数据开始风靡全球。
大数据的概念与内涵
“大数据”的概念早已有之,1980年著名未来学家阿尔文•托夫勒便在《第三次浪潮》一书中,将大数据热情地赞颂为“第三次浪潮的华彩乐章”。但是直到近几年,“大数据”才与“云计算”、“物联网”一道,成为互联网信息技术行业的流行词汇。2008年,在谷歌成立10周年之际, 著名的《自然》杂志出版了一期专刊,专门讨论未来的大数据处理相关的一系列技术问题和挑战,其中就提出了“Big Data”的概念。2011年5 月,在“云计算相遇大数据” 为主题的EMC World 2011 会议中,EMC 也抛出了Big Data概念。所以,很多人认为,2011年是大数据元年。
此后,诸多专家、机构从不同角度提出了对大数据理解。当然,由于大数据本身具有较强的抽象性,目前国际上尚没有一个统一公认的定义。维基百科认为大数据是超过当前现有的数据库系统或数据库管理工具处理能力,处理时间超过客户能容忍时间的大规模复杂数据集。全球排名第一的企业数据集成软件商Informatica认为大数据包括海量数据和复杂数据类型,其规模超过传统数据库系统进行管理和处理的能力。亚马逊网络服务(AWS)、大数据科学家JohnRauser提到一个简单的定义:大数据就是任何超过了一台计算机处理能力的庞大数据量。百度搜索的定义为:"大数据"是一个体量特别大,数据类别特别大的数据集,并且这样的数据集无法用传统数据库工具对其内容进行抓取、管理和处理。互联网周刊的定义为:"大数据"的概念远不止大量的数据(TB)和处理大量数据的技术,或者所谓的"4个V"之类的简单概念,而是涵盖了人们在大规模数据的基础上可以做的事情,而这些事情在小规模数据的基础上是无法实现的。换句话说,大数据让我们以一种前所未有的方式,通过对海量数据进行分析,获得有巨大价值的产品和服务,或深刻的洞见,最终形成变革之力。
综合上述不同的定义,我们认为,大数据至少应包括以下两个方面:一是数量巨大,二是无法使用传统工具处理。因此,大数据不是关于如何定义,最重要的是如何使用。它强调的不仅是数据的规模,更强调从海量数据中快速获得有价值信息和知识的能力。
大数据4V特征
一般认为,大数据主要具有以下四个方面的典型特征:规模性(Volume)、多样性(Varity)、高速性(Velocity)和价值性(Value),即所谓的“4V”。
1.规模性。大数据的特征首先就体现为“数量大”,存储单位从过去的GB到TB,直至PB、EB。随着信息技术的高速发展,数据开始爆发性增长。社交网络(微博、推特、脸书)、移动网络、各种智能终端等,都成为数据的来源。淘宝网近4亿的会员每天产生的商品交易数据约20TB;脸书约10亿的用户每天产生的日志数据超过300TB。迫切需要智能的算法、强大的数据处理平台和新的数据处理技术,来统计、分析、预测和实时处理如此大规模的数据。
2.多样性。广泛的数据来源,决定了大数据形式的多样性。大数据大体可分为三类:一是结构化数据,如财务系统数据、信息管理系统数据、医疗系统数据等,其特点是数据间因果关系强;二是非结构化的数据,如视频、、音频等,其特点是数据间没有因果关系;三是半结构化数据,如HTML文档、邮件、网页等,其特点是数据问的因果关系弱。
3.高速性。与以往的档案、广播、报纸等传统数据载体不同,大数据的交换和传播是通过互联网、云计算等方式实现的,远比传统媒介的信息交换和传播速度快捷。大数据与海量数据的重要区别,除了大数据的数据规模更大以外,大数据对处理数据的响应速度有更严格的要求。实时分析而非批量分析,数据输入、处理与丢弃立刻见效,几乎无延迟。数据的增长速度和处理速度是大数据高速性的重要体现。
4价值性。这也是大数据的核心特征。现实世界所产生的数据中,有价值的数据所占比例很小。相比于传统的小数据,大数据最大的价值在于通过从大量不相关的各种类型的数据中,挖掘出对未来趋势与模式预测分析有价值的数据,并通过机器学习方法、人工智能方法或数据挖掘方法深度分析,发现新规律和新知识,并运用于农业、金融、医疗等各个领域,从而最终达到改善社会治理、提高生产效率、推进科学研究的效果。
大数据六大发展趋势
虽然大数据目前仍处在发展的起步阶段,尚存在着诸多的困难与挑战,但我们相信,随着时间的推移,大数据未来的发展前景非常可观。
1.数据将呈现指数级增长
近年来,随着社交网络、移动互联、电子商务、互联网和云计算的兴起,音频、视频、图像、日志等各类数据正在以指数级增长。据有关资料显示,2011年,全球数据规模为18ZB,可以填满575亿个32GB的iPad,这些iPad可以在中国修建两座长城。到2020年,全球数据将达到40ZB,如果把它们全部存入蓝光光盘,这些光盘和424艘尼米兹号航母重量相当。美国互联网数据中心则指出,互联网上的数据每年将增长50%,每两年便将翻一番,目前世界上90%以上的数据是最近几年才产生的。
2.数据将成为最有价值的资源
在大数据时代,数据成为继土地、劳动、资本之后的新要素,构成企业未来发展的核心竞争力。《华尔街日报》在一份题为《大数据,大影响》的报告宣传,数据已经成为一种新的资产类别,就像货币或黄金一样。IBM执行总裁罗睿兰认为指出,“数据将成为一切行业当中决定胜负的根本因素,最终数据将成为人类至关重要的自然资源。”随着大数据应用的不断发展,我们有理由相信大数据将成为机构和企业的重要资产和争夺的焦点谷歌、苹果、亚马逊、阿里巴巴、腾讯等互联网巨头正在运用大数据力量获得商业上更大的成功,并且将会继续通过大数据来提升自己的竞争力。
3.大数据和传统行业智能融合
通过对大数据收集、整理、分析、挖掘, 我们不仅可以发现城市治理难题,掌握经济运行趋势,还能够驱动精确设计和精确生产模式,引领服务业的精确化和增值化,创造互动的创意产业新形态。麦当劳、肯德基以及苹果公司等旗舰专卖店的位置都是建立在数据分析基础之上的精准选址。百度、阿里、腾讯等通过对海量数据的掌握和分析,为用户提供更加专业化和个性化的服务。在智慧城市建设不断深入的情况下,大数据必将在智慧城市中发挥越来越重要的作用。由城市数字化到智慧城市,关键是要实现对数字信息的智慧处理,其核心是引入了大数据处理技术,大数据将成为智慧城市的核心智慧引擎。智慧金融、智慧安防、智慧医疗、智慧教育、智慧交通、智慧城管等,无不是大数据和传统产业融合的重要领域。
4.数据将越来越开放
大数据是人类的共同资源、共同财富,数据开放共享是不可逆转的历史潮流。随着各国政府和企业对开放数据带来的社会效益和商业价值认识的不断提升,全球必将很快掀起一股数据开放的热潮。事实上,大数据的发展需要全世界、全人类的共同协作,变私有大数据为公共大数据,最终实现私有、企业自有、行业自有的全球性大数据整合,才不至形成一个个毫无价值的“数据孤岛”。大数据越关联越有价值,越开放越有价值。尤其是公共事业和互联网企业的数据开放数据将越来越多。目前,美欧等发达国家和地区的政府都在政府和公共事业上的数据做出了表率。中国政府也将一方面带头力促数据公开共享,另一方面,还通过推动建设各类大数据服务交易平台,为数据使用者提供丰富的数据来源和数据的应用。
5.大数据安全将日受重视
大数据在经济社会中应用日益广泛的同时,大数据的安全也必将受到更多的重视。大数据时代,在我们用数据挖掘和数据分析等大数据技术获取有价值信息的同时,“黑客”也可以利用这些大数据技术最大限度地收集更多有用信息,对其感兴趣的目标发起更加“精准的”攻击。近年来,个人隐私、企业商业信息甚至是国家机密泄露事件时有发生。对此,美欧等发达国家纷纷制定完善了保护信息安全、防止隐私泄露等相关法律法规。可以预见,在不久的将来,其他国家也会迅速跟进,以更好地保障本国政府、企业乃至居民的数据安全。
6.大数据人才将备受欢迎
随着大数据的不断发展及其应用的日益广泛,包括大数据分析师、数据管理专家、大数据算法工程师、数据产品经理等在内的具有丰富经验的数据分析人员将成为全社会稀缺的资源和各机构争夺的人才。据著名国际咨询公司Gartner预测,2015年全球大数据人才需求将达到440万人,而人才市场仅能够满足需求的三分之一。麦肯锡公司则预测美国到2018年需要深度数据分析人才44万—49万,缺口为14万—19万人。有鉴于此,美国通过国家科学基金会,鼓励研究性大学设立跨学科的学位项目,为培养下一代数据科学家和工程师做准备,并设立培训基金支持对大学生进行相关技术培训,召集各个学科的研究人员共同探讨大数据如何改变教育和学习等。英国、澳大利亚、法国等国家也类似地对大数据人才的培养做出专项部署。IBM 等企业也开始全面推进与高校在大数据领域的合作,力图培养企业发展需要的既懂业务知识又具分析技能的复合型数据人才。(武锋:国家信息中心)
大数据是指在一定时间内,常规软件工具无法捕捉、管理和处理的数据集合。它是一种海量、高增长、多元化的信息资产,需要一种新的处理模式,以具备更强的决策、洞察和流程优化能力。
大数据技术的战略意义不在于掌握庞大的数据信息,而在于对这些有意义的数据进行专业的处理。换句话说,如果把大数据比作一个行业,这个行业盈利的关键在于提高数据的“处理能力”,通过“处理”实现数据的“增值”。
从技术上讲,大数据和云计算的关系就像硬币的正反面一样密不可分。大数据不能用单台计算机处理,必须采用分布式架构。其特点在于海量数据的分布式数据挖掘。但它必须依赖云计算分布式处理、分布式数据库、云存储和虚拟化技术。
扩展信息:
大数据只是现阶段互联网的一个表征或特征。没有必要将其神话或保持敬畏。在以云计算为代表的技术创新背景下,这些原本看似难以收集和使用的数据开始被轻松使用。通过各行各业的不断创新,大数据将逐渐为人类创造更多的价值。
是体现大数据技术价值的手段,是进步的基石。这里从云计算、分布式处理技术、存储技术、感知技术的发展,阐述大数据从采集、处理、存储到形成结果的全过程。
实践是大数据的终极价值。在这里,我们从互联网大数据、政府大数据、企业大数据、个人大数据四个方面来描绘大数据的美好图景和将要实现的蓝图。
大数据是指在一定时间内,常规软件工具无法捕捉、管理和处理的数据集合。它是一种海量、高增长、多元化的信息资产,需要一种新的处理模式,以具备更强的决策、洞察和流程优化能力。
大数据技术的战略意义不在于掌握庞大的数据信息,而在于对这些有意义的数据进行专业的处理。换句话说,如果把大数据比作一个行业,这个行业盈利的关键在于提高数据的“处理能力”,通过“处理”实现数据的“增值”。
从技术上讲,大数据和云计算的关系就像硬币的正反面一样密不可分。大数据不能用单台计算机处理,必须采用分布式架构。其特点在于海量数据的分布式数据挖掘。但它必须依赖云计算分布式处理、分布式数据库、云存储和虚拟化技术。
扩展信息:
大数据只是现阶段互联网的一个表征或特征。没有必要将其神话或保持敬畏。在以云计算为代表的技术创新背景下,这些原本看似难以收集和使用的数据开始被轻松使用。通过各行各业的不断创新,大数据将逐渐为人类创造更多的价值。
是体现大数据技术价值的手段,是进步的基石。这里从云计算、分布式处理技术、存储技术、感知技术的发展,阐述大数据从采集、处理、存储到形成结果的全过程。
实践是大数据的终极价值。在这里,我们从互联网大数据、政府大数据、企业大数据、个人大数据四个方面来描绘大数据的美好图景和将要实现的蓝图。
大数据的类型大致可分为三类:传统企业数据、机器和传感器数据、社交数据。
1、传统企业数据(Traditional enterprise data):包括 CRM systems的消费者数据,传统的ERP数据,库存数据以及账目数据等。
2、机器和传感器数据(Machine-generated / sensor data):包括呼叫记录(Call Detail Records),智能仪表,工业设备传感器,设备日志(通常是Digital exhaust),交易数据等。
3、社交数据(Social data):包括用户行为记录,反馈数据等。如Twitter,Facebook这样的社交媒体平台。
扩展资料:
大数据挖掘商业价值的方法主要分为四种:
1、客户群体细分,然后为每个群体量定制特别的服务。
2、模拟现实环境,发掘新的需求同时提高投资的回报率。
3、加强部门联系,提高整条管理链条和产业链条的效率。
4、降低服务成本,发现隐藏线索进行产品和服务的创新。
以上就是关于什么是大数据全部的内容,包括:什么是大数据、大数据是什么、大数据是指什么等相关内容解答,如果想了解更多相关内容,可以关注我们,你们的支持是我们更新的动力!