倍角公式,是三角函数中非常实用的一类公式。就是把二倍角的三角函数用本角的三角函数表示出来。接下来看一下具体的公式有哪些。
三角函数倍角公式
半倍角公式
sin(A/2)=±√((1-cosA)/2)
cos(A/2)=±√((1+cosA)/2)
tan(A/2)=±√((1-cosA)/((1+cosA))
二倍角公式
Sin2A=2SinACosA
Cos2A=CosA^2-SinA^2=1-2SinA^2=2CosA^2-1
tan2A=(2tanA)/(1-tanA^2)
三倍角公式
三倍角公式是把形如sin(3x), cos(3x)等三角函数用对应单倍角三角函数表示的恒等式。
sin3A=4sinAsin(π/3+A)sin(π/3-A)
cos3A=4cosAcos(π/3+A)cos(π/3-A)
tan3A=tanAtan(π/3+A)tan(π/3-A)
四倍角公式
sin4A=-4(cosAsinA(2sinA^2-1))
cos4A=1+(-8cosA^2+8cosA^4)
tan4A=(4tanA-4tanA^3)/(1-6tanA^2+tanA^4)
三角函数记忆口诀三角函数是函数,象限符号坐标注。函数图像单位圆,周期奇偶增减现。
同角关系很重要,化简证明都需要。正六边形顶点处,从上到下弦切割;
中心记上数字一,连结顶点三角形。向下三角平方和,倒数关系是对角,
顶点任意一函数,等于后面两根除。诱导公式就是好,负化正后大化小,
变成锐角好查表,化简证明少不了。二的一半整数倍,奇数化余偶不变,
将其后者视锐角,符号原来函数判。两角和的余弦值,化为单角好求值,
余弦积减正弦积,换角变形众公式。和差化积须同名,互余角度变名称。
计算证明角先行,注意结构函数名,保持基本量不变,繁难向着简易变。
逆反原则作指导,升幂降次和差积。条件等式的证明,方程思想指路明。
万能公式不一般,化为有理式居先。公式顺用和逆用,变形运用加巧用;
一加余弦想余弦,一减余弦想正弦,幂升一次角减半,升幂降次它为范;
三角函数反函数,实质就是求角度,先求三角函数值,再判角取值范围;
利用直角三角形,形象直观好换名,简单三角的方程,化为最简求解集。
半角公式tan(a/2)=(1-cosa)/sina=sina/(1+cosa);
cot(a/2)=sina/(1-cosa)=(1+cosa)/sina
sin^2(a/2)=(1-cos(a))/2
cos^2(a/2)=(1+cos(a))/2
二倍角公式
sin2a=2sina•cosa
cos2a=cos^2
a-sin^2
a=1-2sin^2
a=2cos^2
a-1
tan2a=(2tana)/(1-tan^2
a)
和差化积
cos(α+β)=cosαcosβ-sinαsinβ
cos(α-β)=cosαcosβ+sinαsinβ
sin(α+β)=sinαcosβ+cosαsinβ
sin(α-β)=sinαcosβ
-cosαsinβ
积化和差
sinαsinβ
=
[cos(α-β)-cos(α+β)]
/2
cosαcosβ
=
[cos(α+β)+cos(α-β)]/2
sinαcosβ
=
[sin(α+β)+sin(α-β)]/2
cosαsinβ
=
[sin(α+β)-sin(α-β)]/2
万能公式
sinα=2tan(α/2)/[1+tan²(α/2)]
cosα=[1-tan²(α/2)]/[1+tan²(α/2)]
tanα=2tan(α/2)/[1-tan²(α/2)]
……
百度百科里都有的
>
二倍角公式
正弦二倍角公式:
sin2α
=
2cosαsinα
推导:sin2A=sin(A+A)=sinAcosA+cosAsinA=2sinAcosA
余弦二倍角公式:
余弦二倍角公式有三组表示形式,三组形式等价:
1Cos2a=Cosa^2-Sina^2
2Cos2a=1-2Sina^2
3Cos2a=2Cosa^2-1
推导:cos2A=cos(A+A)=cosAcosA-sinAsinA=(cosA)^2-(sinA)^2=2(cosA)^2-1
=1-2(sinA)^2
正切二倍角公式:
tan2α=2tanα/[1-(tanα)]
推导:tan2A=tan(A+A)=(tanA+tanA)/(1-tanAtanA)=2tanA/[1-(tanA)^2]
半角公式
利用某个角(如A)的正弦,余弦,正切,及其他三角函数,来求某个角的半角(如A/2)的正弦,余弦,正切,及其他三角函数的公式。
sin^2(α/2)=(1-cosα)/2
cos^2(α/2)=(1+cosα)/2
tan^2(α/2)=(1-cosα)/(1+cosα)
tan(α/2)=sinα/(1+cosα)=(1-cosα)/sinα
倍角公式是三角函数中非常实用的一类公式
现列出公式如下:
sin2α=2sinαcosα
tan2α=2tanα/(1-tan^2(α))
cos2α=cos^2(α)-sin^2(α)=2cos^2(α)-1=1-2sin^2(α)
tan(α/2)=sinα/(1+cosα)=(1-cosα)/sinα
tan(2α)=2tanα/[1-tan^2(α)]
三倍角公式:
sin3α=3sinα-4sin^3(α)
cos3α=4cos^3(α)-3cosα
tan3α=tan(α)(-3+tan(α)^2)/(-1+3tan(α)^2)
·半角公式:
sin^2(α/2)=(1-cosα)/2
cos^2(α/2)=(1+cosα)/2
tan^2(α/2)=(1-cosα)/(1+cosα)
tan(α/2)=sinα/(1+cosα)=(1-cosα)/sinα
以上就是关于三角函数倍角公式有哪些全部的内容,包括:三角函数倍角公式有哪些、三角函数的倍角公式和半角公式的万能公式是什么、所有的二倍角公式以及半角公式等相关内容解答,如果想了解更多相关内容,可以关注我们,你们的支持是我们更新的动力!