分式的乘方是指:把分式的分子 、 分母分别乘方即为乘方结果 。
分式乘方法则(rule of power of a fraction)是分式的运算法则之一,分式乘方的法则是:把分式的分子、分母分别乘方即为乘方结果。分式乘方时,要把分式的分子、分母分别加上括号。分式本身的符号也要同时乘方。分式的分子和分母是多项式时,分子、分母要分别做一个整体进行乘方。分式的乘除、乘方混合运算顺序与分数乘除、乘方混合运算顺序相同。
分式的乘除法法则与分数的乘除法法则类似,法则中的a,b,c,d可以代表数也可以代表整式。分式乘除法的运算,归根到底是乘法运算,由乘法法则,应先把分子、分母分别相乘,化成一个分式后再进行约分,但在实际演算时,这样做有时显得繁琐,因此,可根据情况约分,再相乘。分式的乘除运算,当分子和分母是多项式时,一般应先进行因式分解,再约分。
数学的发展史:
第一时期:数学形成时期(远古—公元前六世纪),这是人类建立最基本的数学概念的时期。人类从数数开始逐渐建立了自然数的概念,简单的计算法,并认识了最基本、最简单的几何形式,算术与几何还没有分开。第二时期:初等数学时期、常量数学时期(公元前六世纪—公元十七世纪初)这个时期的基本的、最简单的成果构成中学数学的主要内容,约持续了两千年。
这个时期逐渐形成了初等数学的主要分支:算数、几何、代数。第三时期:变量数学时期(公元十七世纪初—十九世纪末)变量数学产生于17世纪,经历了两个决定性的重大步骤:第一步是解析几何的产生;第二步是微积分的创立。第四时期:现代数学时期(十九世纪末开始),数学发展的现代阶段的开端,以其所有的基础—代数、几何、分析中的深刻变化为特征。
分数的运算法则:
1.分数的加减法则:同分母的分数相加减,只把分子相加减,分母不变。异分母的分数相加减,先通分,然后再加减。
2.分数乘整数法则:用分数的分子和整数相乘的积作分子,分母不变。
3.分数乘分数法则:用分子相乘的积作分子,分母相乘的积作为分母。
4.分数除以整数(0除外),等于分数乘以这个整数的倒数。
5.一个数除以分数,等于这个数乘以分数的倒数。
6.分数计算到最后,得数必须化成最简分数。
7.分数的基本性质:分数的分子和分母同时乘以或除以同一个数(0除外),分数的大小不变。
:
一般地,如果A、B(B不等于零)表示两个整式,且B中含有字母,那么式子A / B 就叫做分式,其中A称为分子,B称为分母。分式是不同于整式的一类代数式,分式的值随分式中字母取值的变化而变化。
定义
形如 (A、B是整式,B中含有字母)的式子叫做分式。其中A叫做分式的分子,B叫做分式的分母。当分式的分子的次数低于分母的次数时,我们把这个分式叫做真分式;当分式的分子的次数高于分母的次数时,我们把这个分式叫做假分式。
注意:判断一个式子是否是分式,不要看式子是否是 的形式,关键要满足:分式的分母中必须含有字母,分子分母均为整式。无需考虑该分式是否有意义,即分母是否为零。由于字母可以表示不同的数,所以分式比分数更具有一般性。
方法:数看结果,式看形。
分式条件
分式有意义条件:分母不为0。
2分式值为0条件:分子为0且分母不为0。
3分式值为正(负)数条件:分子分母同号得正,异号得负。
4分式值为1的条件:分子=分母≠0。
5分式值为-1的条件:分子分母互为相反数,且都不为0。
代数式分类
整式和分式统称为有理式。
带有根号且根号下含有字母的式子叫做无理式。
无理式和有理式统称代数式。
(a+b)/ab=1/a
+
1/b
(a-b)/ab=1/a
-
1/b
1约分:
把一个分式的分子和分母的公因式(不为1的数)约去,这种变形称为约分。
2分式的乘法法则:
两个分式相乘,把分子相乘的积作为积的分子,把分母相乘的积作为积的分母。
两个分式相除,把除式的分子和分母颠倒位置后再与被除式相乘。
3
分式的加减法法则:
同分母的分式相加减,分母不变,把分子相加减。
4通分:
异分母的分式可以化成同分母的分式,这一过程叫做通分。如:3/2和2/3可化为9/6和4/6即:33/23,22/32!
5异分母分式的加减法法则:
异分母的分式相加减,先通分,化为同分母的分式,然后再按同分母分式的加减法法则进行计算。
(1)定义:一般地,如果A,B表示两个整式,并且B中含有字母,那么式子
A/B
叫做分式(fraction)。
注:A/B=A×1/B
(2)组成:在分式
中A称为分式的分子,B称为分式的分母。
(3)意义:对于任意一个分式,分母都不能为0,否则分式无意义。
(4)分式值为0的条件:在分母不等于0的前提下,分子等于0,则分式值为0。
注:分式的概念包括3个方面:①分式是两个整式相除的分式,其中分子为被除式,分母为除式,分数线起除号的作用;②分式的分母中必须含有字母,而分子中可以含有字母,也可以不含字母,这是区别整式的重要依据;③在任何情况下,分式的分母的值都不可以为0,否则分式无意义。这里,分母是指除式而言。而不是只就分母中某一个字母来说的。也就是说,分式的分母不为零是隐含在此分式中而无须注明的条件。
编辑本段第二节
分式的基本性质和变形应用
1分式的基本性质:分式的分子和分母同时乘以(或除以)同一个不为0的整式,分式的值不变。用式子表示为:A/B=AC/BC
A/B=A÷C/B÷C
(A,B,C为整式,且B、C≠0)
2约分:把一个分式的分子和分母的公因式约去,这种变形称为分式的约分
3分式的约分步骤:(1)如果分式的分子和分母都是单项式或者是几个因式乘积的形式,将它们的公因式约去(2)分式的分子和分母都是多项式,将分子和分母分别分解因式,再将公因式约去
注:公因式的提取方法:系数取分子和分母系数的最大公约数,字母取分子和分母共有的字母,指数取公共字母的最小指数,即为它们的公因式
4最简分式:一个分式的分子和分母没有公因式时,这个分式称为最简分式约分时,一般将一个分式化为最简分式
5通分:把几个异分母分式分别化为与原分式值相等的同分母分式,叫做分式的通分
6分式的通分步骤:先求出所有分式分母的最简公分母,再将所有分式的分母变为最简公分母同时各分式按照分母所扩大的倍数,相应扩大各自的分子
注:最简公分母的确定方法:系数取各因式系数的最小公倍数,相同字母的最高次幂及单独字母的幂的乘积
注:(1)约分和通分的依据都是分式的基本性质2(2)分式的约分和通分都是互逆运算过程
编辑本段第三节
分式的四则运算
1同分母分式加减法则:同分母的分式相加减,分母不变,把分子相加减用字母表示为:a/c±b/c=a±b/c
2异分母分式加减法则:异分母的分式相加减,先通分,化为同分母的分式,然后再按同分母分式的加减法法则进行计算用字母表示为:a/b±c/d=ad±cb/bd
3分式的乘法法则:两个分式相乘,把分子相乘的积作为积的分子,把分母相乘的积作为积的分母用字母表示为:a/b
c/d=ac/bd
4分式的除法法则:(1)两个分式相除,把除式的分子和分母颠倒位置后再与被除式相乘a/b÷c/d=ad/bc
(2)除以一个分式,等于乘以这个分式的倒数:a/b÷c/d=a/bd/c
编辑本段第四节
分式方程
1分式方程的意义:分母中含有未知数的方程叫做分式方程
2分式方程的解法:①去分母(方程两边同时乘以最简公分母,将分式方程化为整式方程);②按解整式方程的步骤求出未知数的值;③验根(求出未知数的值后必须验根,因为在把分式方程化为整式方程的过程中,扩大了未知数的取值范围,可能产生增根)
分式方程的解法
①去分母{方程两边同时乘以最简公分母(最简公分母:①系数取最小公倍数②出现的字母取最高次幂③出现的因式取最高次幂),将分式方程化为整式方程;若遇到互为相反数时不要忘了改变符号};②按解整式方程的步骤(移项,若有括号应去括号,注意变号,合并同类项,
系数化为1)求出未知数的值;③验根(求出未知数的值后必须验根,因为在把分式方程化为整式方程的过程中,扩大了未知数的取值范围,可能产生增根)
验根时把整式方程的根代入最简公分母,如果最简公分母等于0,这个根就是增根。否则这个根就是原分式方程的根。若解出的根是增根,则原方程无解。
如果分式本身约分了,也要带进去检验。
在列分式方程解应用题时,不仅要检验所的解是否满足方程式,还要检验是否符合题意。
一般的,解分式方程时,去分母后所得整式方程的解有可能使原方程中分母为零,因此要将整式方程的解代入最简公分母,如果最简公分母的值不为零,则是方程的解
归纳:
解分式方程的基本思路是将分式方程化为整式方程,具体做法是“去分母”,即方程两边同乘最简公分母,这也是解分式方程的一般思路和做法。
例题:
(1)x/(x+1)=2x/(3x+3)+1
两边乘3(x+1)
3x=2x+(3x+3)
3x=5x+3
2x=-3
x=-3/2
分式方程要检验
经检验,x=-3/2是方程的解
(2)2/(x-1)=4/(x^2-1)
两边乘(x+1)(x-1)
2(x+1)=4
2x+2=4
2x=2
x=1
分式方程要检验
把x=1带入原方程,使分母为0,是增根。
所以原方程2/x-1=4/x^2-1
无解
一定要检验!!
检验格式:把x=a
带入最简公分母,若x=a使最简公分母为0,则a是原方程的增根若x=a使最简公分母不为零,则a是原方程的根
注意:可凭经验判断是否有解。若有解,带入所有分母计算:若无解,带入无解分母即可
分式约分
如果分子和分母是多项式,要把多项式分解因式再约分
如:x^2-2x+1/x^2-1=(X-1)^2/(X+1)(X-1)=X-1/X+1
最简分式:分子分母没有公因式----如上!
分式的通分:将n个异分母的分式分别化为与原来分式相等的同分母分式
1约分: 把一个分式的分子和分母的公因式(不为1的数)约去,这种变形称为约分。 2分式的乘法法则: 两个分式相乘,把分子相乘的积作为积的分子,把分母相乘的积作为积的分母。 两个分式相除,把除式的分子和分母颠倒位置后再与被除式相乘。 3 分式的加减法法则: 同分母的分式相加减,分母不变,把分子相加减。 4通分: 异分母的分式可以化成同分母的分式,这一过程叫做通分。如:3/2和2/3可化为9/6和4/6即:33/23,22/32! 5异分母分式的加减法法则: 异分母的分式相加减,先通分,化为同分母的分式,然后再按同分母分式的加减法法则进行计算。 (1)定义:一般地,如果A,B表示两个整式,并且B中含有字母,那么式子 A/B 叫做分式(fraction)。 注:A/B=A×1/B (2)组成:在分式 中A称为分式的分子,B称为分式的分母。 (3)意义:对于任意一个分式,分母都不能为0,否则分式无意义。 (4)分式值为0的条件:在分母不等于0的前提下,分子等于0,则分式值为0。 注:分式的概念包括3个方面:①分式是两个整式相除的分式,其中分子为被除式,分母为除式,分数线起除号的作用;②分式的分母中必须含有字母,而分子中可以含有字母,也可以不含字母,这是区别整式的重要依据;③在任何情况下,分式的分母的值都不可以为0,否则分式无意义。这里,分母是指除式而言。而不是只就分母中某一个字母来说的。也就是说,分式的分母不为零是隐含在此分式中而无须注明的条件。
分数的乘除法的法则为:分数乘以分数,用分子的积做积的分子,分母的积做积的分母。
如: (5x+2)/(25-10x+x^2)乘以(x^2-25)/(25x^2-4)
=[(5x+2)/(x-5)^2]乘以[(x+5)(x-5)]/[(5x-2)(5x+2)]
=(x+5)/[(x-5)(5x-2)]
分式的运算
1、分式的乘除
分式的乘法法则:分式乘分式,用分子的积作为积的分子,分母的积作为积的分母
用式子表示为: a/b·c/d=ac/bd
分式的除法法则:分式除以分式,把除式的分子、分母颠倒位置后,与被除式相乘
用式子表示为: a/b÷c/d=a/b·d/c=ad/bc
理解这两个法则,要注意如下几点:
①
分式的乘除运算归根到底是乘法运算,其实质是分式的约分;
②除式或被除式是整式时,可把它们看作是分母是1的分式,然后依照除法法则进行计算;
③对于分式的乘除运算,如果没有其他条件(如括号等),应按照由左到右的顺序进行计算,以免出现类似m÷n×1/n=m÷1=m这样的错误为了避免这样的错误发生,先将除法转化为乘法后再计算;
④分式的运算结果一定要化为最简分式或整式
2、分式的乘方
分式的乘方法则:分式乘方要把分子、分母分别乘方
用式子表示为: (a/b)^n=a^n/b^n (n为正整数,b≠0)
理解这两个法则,要注意如下几点:
①分式乘方时,一定要把分式加上括号
②分式本身的符号也要同时乘方;
③分式分子或分母是多项式时,要避免出现类似(a+b)^n/c^n=(a^n+b^n)/c^n 这样的错误
3、分式的加减
分式的加减法法则:
(1)同分母分式相加减,分母不变,把分子相加减;
(2)异分母分式相加减,先通分,变为同分母的分式,再加减
理解这两个法则,要注意如下几点:
①“把分子相加减”就是把各个分式的“分子整体”
相加减,各分子都应加括号,特别是相减时,要避免出现符号错误;
②异分母分式相加减首先转化为同分母分式相加减,然后按照同分母分式加减法法则进
行计算其转化的关键是通分;
③异分母分式的加减运算的一般步骤是:
i通分:将异分母分式化为同分母分式;
ii写成“分母不变,把分子相加减”的形式;
iii分子化简:分子去括号、合并同类项;iv约分:将结果化为最简分式或整式
(3)求最简公分母的方法:
①将各分母分解因式;
②找各分母系数的最小公倍数;
③找出各分母中不同的因式,相同因式中取次数最高的满足②③的因式之积即为各分式的最简公分母(求最简公分母在分式的加减运算和解分式方程时起非常重要的作用)。
4、分式的混合运算
分式的混合运算法则:先算乘方,再算乘除,最后算加减,如果有括号,先算括号里面的
在进行分式的混合运算过程中,要灵活运用交换律、结合律、分配律等特别是分式的加减运算与加法的交换律、结合律相结合,会使运算过程简捷
1两个分式相乘,把分子相乘的积作为积的分子,把分母相乘的积作为积的分母
2两个分式相除,把除式的分子和分母颠倒位置后再与被除式相乘
3当指数为正整数时,分式乘方就是分式连乘
即分子分母分别乘方
4同分母的分式相加减,分母不变,把分子相加减;
异分母的分式相加减,先通分,化为同分母的分式,然后再按同分母的加减法法则进行计算;
计算顺序:先乘除,后加减,有括号的先算括号的
5分母中含有未知数的方程叫做分式方程
13分之2乘39等于6。
分式乘法法则(rule of a fraction multiplication)是分式的运算法则之一,分式相乘的法则是:用分子的积作为积的分子,分母的积作为积的分母,并将乘积化为既约分式或整式,作分式乘法时,也可先约分后计算。
分式乘法的注意事项:
分式的乘除法法则与分数的乘除法法则类似,法则中的a,b,c,d可以代表数也可以代表整式。
分式乘除法的运算,归根到底是乘法运算,由乘法法则,应先把分子、分母分别相乘,化成一个分式后再进行约分,但在实际演算时,这样做有时显得繁琐,因此,可根据情况约分,再相乘。
分式的乘除运算,当分子和分母是多项式时,一般应先进行因式分解,再约分,把分子和分母中含有同一字母的多项式按降幂(或升幂)排列后,容易看出分子与分母的公因式,便于约分。
以上就是关于分式的乘方全部的内容,包括:分式的乘方、分式的运算、初中数学分式全教程,给我一个,还有各部分比较难的题型以及答案等相关内容解答,如果想了解更多相关内容,可以关注我们,你们的支持是我们更新的动力!