椭圆的标准方程x^2/a^2 + y^2/b^2 = 1 。
椭圆的参数方程x=acosθ,y=bsinθ。
而角t的终边一般不经过点(acost,bsint) 只有在终边在坐标轴上时才经过。
:
设M点坐标(acost,bsint),点B1坐标(0,b),点B2坐标(0,-b)。
直线MB1方程:y=[b(sint-1)/acost]x +b,令y=0解得Xp=acost/(1-sint)。
直线MB2方程:y=[b(sint+1)/acost]x -b,令y=0解得Xq=acost/(1+sint)。
|OP||OQ|=|XpXq|=acos²t/(1-sin²t)=a为定值。
椭圆的一般式方程是:a+bx+cy+dxy+ex^2+fy^2=0,其中a、b、c、d、e、f,为任意椭圆方程的系数,该一般方程包含了标准椭圆的旋转和平移变换。
当焦点在x轴时,椭圆的标准方程是:x^2/a^2+y^2/b^2=1,(a>b>0)。
当焦点在y轴时,椭圆的标准方程是:y^2/a^2+x^2/b^2=1,(a>b>0)。
其中a^2-c^2=b^2。
推导:PF1+PF2>F1F2(P为椭圆上的点F为焦点)。
对称性:
焦点在X轴时:长轴顶点:(-a,0),(a,0)。
短轴顶点:(0,b),(0,-b)。
焦点在Y轴时:长轴顶点:(0,-a),(0,a)。
短轴顶点:(b,0),(-b,0)。
椭圆的标准方程共分两种情况[1]:
当焦点在x轴时,椭圆的标准方程是:x^2/a^2+y^2/b^2=1,(a>b>0);
当焦点在y轴时,椭圆的标准方程是:y^2/a^2+x^2/b^2=1,(a>b>0);
其中a^2-c^2=b^2
推导:PF1+PF2>F1F2(P为椭圆上的点 F为焦点)
中文名
椭圆标准方程
外文名
Standard equation of the ellipse
别称
线条
表达式
x^2/a^2+y^2/b^2=1
提出者
数学家
方程推导
设椭圆的两个焦点分别为F1,F2,它们之间的距离为2c,椭圆上任意一点到F1,F2的距离和为2a(2a>2c)。
以F1,F2所在直线为x轴,线段F1F2的垂直平分线为y轴,建立直角坐标系xOy,则F1,F2的坐标分别为(-c,0),(c,0)。
设M(x,y)为椭圆上任意一点,根据椭圆定义知
|MF1|+|MF2|=2a,(a>0)
即
将方程两边同时平方,化简得
两边再平方,化简得
又
,设
,得
两边同除以 ,得
这个形式是椭圆的标准方程。
通常认为圆是椭圆的一种特殊情况[2] 。
非标准方程
其方程是二元二次方程,可以利用二元二次方程的性质进行计算,分析其特性[3] 。
几何性质
X,Y的范围
当焦点在X轴时 -a≤x≤a,-b≤y≤b
当焦点在Y轴时 -b≤x≤b,-a≤y≤a
对称性
不论焦点在X轴还是Y轴,椭圆始终关于X/Y/原点对称。
顶点:
焦点在X轴时:长轴顶点:(-a,0),(a,0)
短轴顶点:(0,b),(0,-b)
焦点在Y轴时:长轴顶点:(0,-a),(0,a)
短轴顶点:(b,0),(-b,0)
注意长短轴分别代表哪一条轴,在此容易引起混乱,还需数形结合逐步理解透彻[4] 。
焦点:
当焦点在X轴上时焦点坐标F1(-c,0)F2(c,0)
当焦点在Y轴上时焦点坐标F1(0,-c)F2(0,c)
计算方法
((其中 分别是椭圆的长半轴、短半轴的长,可由圆的面积可推导出来)或 (其中 分别是椭圆的长轴,短轴的长)[5] 。
圆和椭圆之间的关系:
椭圆包括圆,圆是特殊的椭圆。
参考资料
[1] 曹才翰中国中学教学百科全书:数学卷[M]沈阳:沈阳出版社
[2] 沈金兴 数学文化视角下的椭圆标准方程推导[J] 数学通讯, 2015(8):
椭圆的标准方程共分两种情况:当焦点在x轴时,椭圆的标准方程是:x^2/a^2+y^2/b^2=1,(a>b>0);当焦点在y轴时,椭圆的标准方程是:y^2/a^2+x^2/b^2=1,(a>b>0)。
椭圆(Ellipse)是平面内到定点F1、F2的距离之和等于常数(大于|F1F2|)的动点P的轨迹,F1、F2称为椭圆的两个焦点。其数学表达式为:|PF1|+|PF2|=2a(2a>|F1F2|)。[椭圆是圆锥曲线的一种,即圆锥与平面的截线。椭圆的周长等于特定的正弦曲线在一个周期内的长度。
以上就是关于椭圆的标准方程是什么全部的内容,包括:椭圆的标准方程是什么、椭圆的一般式方程是怎样的、椭圆的标准方程是什么等相关内容解答,如果想了解更多相关内容,可以关注我们,你们的支持是我们更新的动力!