重心是三角形三边中线的交点
内心是三角形三条内角平分线的交点,即内切圆的圆心
三角形的三条高的交点叫做三角形的垂心
外心是三角形三条边的垂直平分线的交点,即外接圆的圆心。
三角形外心向量公式推导证明:设三角形三边及其对角分别为a、b、c,∠A、∠B、∠C正弦定理有r=a/(2sinA)=b/(2sinB)=c/(2sinC)r=abc/(4S△ABC)三角形外心的向量关系向量PA的模=向量PB的模=向量PC的模(ABC为三角形三个顶点,P为外心)
三角形外接圆向量定理推导
三角形外心向量公式:PA+PB+PC=0。三角形外接圆的圆心叫做三角形的外心。三角形外接圆的圆心也就是三角形三边垂直平分线的交点,三角形的三个顶点就在这个外接圆上。
三角形是由同一平面内不在同一直线上的三条线段‘首尾’顺次连接所组成的封闭图形,在数学、建筑学有应用。常见的三角形按边分有普通三角形(三条边都不相等),等腰三角(腰与底不等的等腰三角形、腰与底相等的等腰三角形即等边三角形);按角分有直角三角形、锐角三角形、钝角三角形等,其中锐角三角形和钝角三角形统称斜三角形。
三角形的重心、垂心、内心、外心的定义
(1)重心——中线的交点:重心将中线长度分成2:1;
(2)垂心——高线的交点:高线与对应边垂直;
(3)内心——角平分线的交点(内切圆的圆心):角平分线上的任意点到角两边的距离相等;
(4)外心——中垂线的交点(外接圆的圆心):外心到三角形各顶点的距离相等。
三角形的内心是三个角平分线的交点,它到三角形三边的距离相等。它是三角形内切圆的圆心。
三角形的外心是三条边的垂直平分线的交点,它到三角形的三个角的距离相等,它是三角形外接圆的圆心。
重心是三角形三边中线的交点
重心到顶点的距离与重心到对边中点的距离之比为2:1
重心和三角形3个顶点组成的3个三角形面积相等。
重心到三角形3个顶点距离的平方和最小。
在平面直角坐标系中,重心的坐标是顶点坐标的算术平均
三角形的三条高的交点叫做三角形的垂心。
锐角三角形垂心在三角形内部。
直角三角形垂心在三角形直角顶点。
钝角三角形垂心在三角形外部。
内心是三角形三条内角平分线的交点,即内切圆的圆心。
内心到三边距离相等(为内切圆半径)
若三边分别为l1,l2,l3,周长为p,则内心的重心坐标为(l1/p,l2/p,l3/p)。
直角三角形的内心到边的距离等于两直角边的和减去斜边的差的二分之一。
双曲线上任一支上一点与两焦点组成的三角形的内心在实轴的射影为对应支的顶点。
外心是三角形三条边的垂直平分线的交点,即外接圆的圆心。
到外心到三角形的三个顶点距离相等
三角形的外心公式:r=c/2(c为直角三角形的斜边)
直角三角形的内心公式:r=(a+b-c)/2(a、b为直角三角形的两条直角边,c为斜边)
三角形的内心公式:r=2s/l(s为三角形的面积,l为三角形的周长)
扩展资料:
求法
设三角形三边及其对角分别为a、b、c,∠A、∠B、∠C
正弦定理有 1) 2R=a/SinA=b/SinB=c/SinC(人教高中版)
由此可得:r=a/(2sinA)=b/(2sinB)=c/(2sinC)
r=abc/(4S△ABC)
三角形外心的向量关系
向量PA的模=向量PB的模=向量PC的模(ABC为三角形三个顶点,P为外心)
参考资料来源:百度百科-三角形外心
重心:三角形顶点与对边中点的连线交于一点,称为三角形重心;
垂心:三角形各边上的高交于一点,称为三角形垂心;
外心:三角形各边上的垂直平分线交于一点,称为三角形外心;
内心:三角形三内角平分线交于一点,称为三角形内心;
中心:正三角形的重心、垂心、外心、内心重合,称为正三角形的中心。
三角形“五心歌”
三角形有五颗心;重、垂、内、外和旁心,
五心性质很重要,认真掌握莫记混.重
心三条中线定相交,交点位置真奇巧,
交点命名为“重心”,重心性质要明了,
重心分割中线段,数段之比听分晓;
长短之比二比一,灵活运用掌握好.垂
心三角形上作三高,三高必于垂心交.
高线分割三角形,出现直角三对整,
直角三角形有十二,构成六对相似形,
四点共圆图中有,细心分析可找清
内
心三角对应三顶点,角角都有平分线,
三线相交定共点,叫做“内心”有根源;
点至三边均等距,可作三角形内切圆,
此圆圆心称“内心”如此定义理当然.外
心三角形有六元素,三个内角有三边.
作三边的中垂线,三线相交共一点.
此点定义为“外心”,用它可作外接圆.
“内心”“外心”莫记混,“内切”“外接”是关键.
按照这个自行画画图,对照上面别人的解释体会一下
以上就是关于三角形重心,内心,垂心,外心指什么全部的内容,包括:三角形重心,内心,垂心,外心指什么、三角形的外心是什么意思、三角形的内心和外心是什么等相关内容解答,如果想了解更多相关内容,可以关注我们,你们的支持是我们更新的动力!