焦点弦公式2p/sina^2
证明:设抛物线为y^2=2px(p>0),过焦点f(p/2,0)的弦直线方程为y=k(x-p/2),直线与抛物线交于a(x1,y1),b(x2,y2)
联立方程得k^2(x-p/2)^2=2px,整理得k^2x^2-p(k^2+2)x+k^2p^2/4=0
所以x1+x2=p(k^2+2)/k^2
由抛物线定义,af=a到准线x=-p/2的距离=x1+p/2,
bf=x2+p/2
所以ab=x1+x2+p=p(1+2/k^2+1)=2p(1+1/k^2)=2p(1+cos^2/sin^2a)=2p/sin^2a
抛物线四种方程的异同
一、共同点:
①原点在抛物线上,离心率e均为1②对称轴为坐标轴;
③准线与对称轴垂直,垂足与焦点分别对称于原点,它们与原点的距离都等于一次项系数的绝对值的1/4
二、不同点:
①对称轴为x轴时,方程右端为±2px,方程的左端为y^2;对称轴为y轴时,方程的右端为±2py,方程的左端为x^2;
②开口方向与x轴(或y轴)的正半轴相同时,焦点在x轴(y轴)的正半轴上,方程的右端取正号;开口方向与x(或y轴)的负半轴相同时,焦点在x轴(或y轴)的负半轴上,方程的右端取负号。
焦点坐标的计算公式是p/2,平面内,到定点与定直线的距离相等的点的轨迹叫做抛物线,其中定点叫抛物线的焦点,定直线叫抛物线的准线,焦点坐标和准线方程是圆锥曲线的两个主要参数。平面内,到定点与定直线的距离相等的点的轨迹叫做抛物线。其中定点叫抛物线的焦点,定直线叫抛物线的准线。
抛物线焦点坐标公式
几何领域的抛物线焦点弦弦长公式定义:如果一条倾斜角为α的直线过抛物线焦点F,并交抛物线于A。B两点,则AB的长度为2P/(sinα)2(即2P除以sinα的平方)。
双曲线焦点坐标公式
焦点在x轴(-c,0)、(c,0);焦点在y轴:(0,-c)、(0,c)。双曲线有两个焦点,焦点的横(纵)坐标满足c=a+b。平面内,到给定一点及一直线的距离之比为常数e((e>1),即为双曲线的离心率)的点的轨迹称为双曲线。
焦点在x轴(-c,0)、(c,0);焦点在y轴:(0,-c)、(0,c)。双曲线有两个焦点,焦点的横(纵)坐标满足c=a+b。平面内,到给定一点及一直线的距离之比为常数e((e>1),即为双曲线的离心率)的点的轨迹称为双曲线。
椭圆焦点坐标公式
椭圆焦点坐标公式是a^2-b^2=c^2,其中a为长轴长,b为短轴长,c为焦距。如果长轴长在x轴上的话,焦距为(C,0),(-C,0),如果长轴长在y轴上的话,焦距为(0,C),(0,-C)。
在数学中,椭圆是平面上到两个固定点的距离之和是常数的轨迹。这两个固定点叫做焦点。
经由这个定义,这样画出一个椭圆:先准备一条线,将这条线的两端各绑在一点上(这两个点就当作是椭圆的两个焦点);取一支笔,将线绷紧,这时候两个点和笔就形成了一个三角形;然后拉着线开始作图,持续的使线绷紧,最后就可以完成一个椭圆的图形了。
解:(x+m)²=ay+n=a[y+(n/a)]。坐标平移,可设x'=x+m,y'=y+(n/a)则x'²=ay'焦点F'(0,a/4)∴原抛物线焦点F(-m,a/4-n/a)
抛物线的焦点,准线的概念:平面内,到定点与定直线的距离相等的点的轨迹叫做抛物线。其中定点叫抛物线的焦点,定直线叫抛物线的准线。
公式如下图:
扩展资料:
抛物线是指平面内到一个定点(焦点)和一条定直线(准线)距离相等的点的轨迹。它有许多表示方法,例如参数表示,标准方程表示等等。
它在几何光学和力学中有重要的用处。
抛物线也是圆锥曲线的一种,即圆锥面与平行于某条母线的平面相截而得的曲线。抛物线在合适的坐标变换下,也可看成二次函数图像。
抛物线的一个描述涉及一个点(焦点)和一条线(该线)。焦点并不在于准则。抛物线是该平面中与阵线和焦点等距的点的轨迹。抛物线的另一个描述是作为圆锥截面,由右圆锥形表面和平行于与锥形表面相切的另一平面的平面的交点形成。第三个描述是代数。
垂直于准线并通过焦点的线(即通过中间分解抛物线的线)被称为“对称轴”。与对称轴相交的抛物线上的点被称为“顶点”,并且是抛物线最锋利弯曲的点。沿着对称轴测量的顶点和焦点之间的距离是“焦距”。
参考资料:
以上就是关于如何用抛物线求焦点弦公式全部的内容,包括:如何用抛物线求焦点弦公式、抛物线焦点弦弦长公式怎么求、抛物线求焦点等相关内容解答,如果想了解更多相关内容,可以关注我们,你们的支持是我们更新的动力!