标准差公式:样本标准差=方差的算术平方根=s=sqrt(((x1-x)²+(x2-x)²+……(xn-x)²)/(n-1))。总体标准差=σ=sqrt(((x1-x)²+(x2-x)²+……(xn-x)²)/n)。
什么是标准差
由于方差是数据的平方,与检测值本身相差太大,人们难以直观的衡量,所以常用方差开根号换算回来这就是我们要说的标准差(SD)。
在统计学中样本的均差多是除以自由度(n-1),它的意思是样本能自由选择的程度。当选到只剩一个时,它不可能再有自由了,所以自由度是(n-1)。
标准差详解及示例
标准差是一组数值自平均值分散开来的程度的一种测量观念。一个较大的标准差,代表大部分的数值和其平均值之间差异较大;一个较小的标准差,代表这些数值较接近平均值。
例如,两组数的集合{0,5,9,14}和{5,6,8,9}其平均值都是7,但第二个集合具有较小的标准差。
标准差公式意义
所有数减去其平均值的平方和,所得结果除以该组数之个数(或个数减一,即变异数),再把所得值开根号,所得之数就是这组数据的标准差。
深蓝区域是距平均值小于一个标准差之内的数值范围。在正态分布中,此范围所占比率为全部数值之68%。对于正态分布,两个标准差之内(深蓝,蓝)的比率合起来为95%。对于正态分布,正负三个标准差之内(深蓝,蓝,浅蓝)的比率合起来为99%。
1、标准差
等于方差的算术平方根=s=sqrt(((x1-x)^2 +(x2-x)^2 +(xn-x)^2)/(n-1))
总体标准差=σ=sqrt(((x1-x)^2 +(x2-x)^2 +(xn-x)^2)/n )
标准差是一组数值自平均值分散开来的程度的一种测量观念。一个较大的标准差,代表大部分的数值和其平均值之间差异较大;一个较小的标准差,代表这些数值较接近平均值。
标准差相关术语:平方差
一、常见错误:平方差公式中常见错误:(注意)
1、学生难于跳出原有的定式思维,如典型错误;(错因:在公式的基础上类推,随意“创造”)
2、混淆公式;
3、运算结果中符号错误;
4、变式应用难以掌握。
以上内容参考 百度百科-平方差
以上内容参考 百度百科-标准差公式
样本的标准差等于总体标准差除以根号下样本的个数。样本标准差=√[1/(n-1)Σ(Xi-X拔)²] i从1到n。总体标准差=√ {∫[-∞→+∞] (x-E(X))²f(x) dx} f(x)是总体的概率密度,E(X)是总体的期望。如是总体,标准差公式根号内除以n,,如是样本,标准差公式根号内除以(n-1),二式差一个自由度,n与n-1。
样本:
样本(specimen)是观测或调查的一部分个体,总体是研究对象的全部。总体中抽取的所要考查的元素总称,样本中个体的多少叫样本容量。一般的,样本的内容是带着单位的,例如:调查某中学300名中学生的视力情况中,样本是300名中学生的视力情况,而样本容量则为300。选取样本的过程叫做抽样,根据不同的对象,在抽样方法也有所不同。
方差是实际值与期望值之差平方的平均值,而标准差是方差平方根。方差和标准差:样本中各数据与样本平均数的差的平方和的平均数叫做样本方差;样本方差的算术平方根叫做样本标准差。样本方差和样本标准差都是衡量一个样本波动大小的量,样本方差或样本标准差越大,样本数据的波动就越大。数学上一般用E{[X-E(X)]^2}来度量随机变量X与其均值E(X)的偏离程度,称为X的方差。定义设X是一个随机变量,若E{[X-E(X)]^2}存在,则称E{[X-E(X)]^2}为X的方差,记为D(X)或DX。即D(X)=E{[X-E(X)]^2},而σ(X)=D(X)^05(与X有相同的量纲)称为标准差或均方差。由方差的定义可以得到以下常用计算公式:D(X)=E(X^2)-[E(X)]^2方差的几个重要性质(设一下各个方差均存在)。(1)设c是常数,则D(c)=0。(2)设X是随机变量,c是常数,则有D(cX)=c^2D(X)。(3)设X,Y是两个相互独立的随机变量,则D(X+Y)=D(X)+D(Y)。(4)D(X)=0的充分必要条件是X以概率为1取常数值c,即P{X=c}=1,其中E(X)=c。标准差(StandardDeviation)各数据偏离平均数的距离(离均差)的平均数,它是离差平方和平均后的方根。用σ表示。因此,标准差也是一种平均数标准差能反映一个数据集的离散程度。平均数相同的,标准差未必相同。例如,A、B两组各有6位学生参加同一次语文测验,A组的分数为95、85、75、65、55、45,B组的分数为73、72、71、69、68、67。这两组的平均数都是70,但A组的标准差为1708分,B组的标准差为216分,说明A组学生之间的差距要比B组学生之间的差距大得多。
以上就是关于标准差的计算公式全部的内容,包括:标准差的计算公式、标准差怎么算、样本标准差和总体标准差的关系是什么等相关内容解答,如果想了解更多相关内容,可以关注我们,你们的支持是我们更新的动力!