学数学有哪些名著必看

左思咏史2023-04-30  28

数学分析是数学系最重要的一门课,经常一个点就会引申出今后的一门课,并且是今后数学系大部分课程的基础。也是初学时比较难的一门课,这里的难主要是对数学分析思想和方法的不适应,其实随着课程的深入会一点点容易起来。当大四考研复习再看时会感觉轻松许多。数学系的数学分析讲三个学期共计15学分270学时。将《数学分析》中较难的一部分删去再加上常微分方程的一些最简单的内容就是中国非数学专业的《高等数学》,或者叫数学一的高数部分。

记住以下几点:

1,对于数学分析的学习,勤奋永远比天分重要。

2,学数学分析不难,难得是长期坚持做题和不遗余力的博览群书。

3,别指望第一遍就能记住和掌握什么,请看第二遍,第三遍,…,第阿列夫遍。

4,看得懂的仔细看,看不懂的硬着头皮看。

5,课本一个字一个字的看完,至少再看一本参考书,尽量做一本习题集。

6,开始前三遍,一本书看三遍效果好于三本书看一遍;第四遍开始相反。

7,经常回头看看自己走过的路

以上几点请在学其他课程时参考。

数学分析书:

初学从中选一本教材,一本参考书就基本够了。我强烈推荐11,推荐1,2,7,8。另外建议看一下当不了教材的16,20。

中国人自己写的:

1《数学分析》陈传璋,金福临,朱学炎,欧阳光中著(新版作者顺序颠倒)

应该是来自辛钦的《数学分析简明教程》,是数学系用的时间最长,用的最多的书,大部分学校考研分析的指定教材。我大一用第二版,现在出了第三版,但是里面仍有一些印刷错误,不过克可以一眼看出来。网络上可以找到课后习题的参考答案,不过建议自己做。不少经济类工科类学校也用这一本书。里面个别地方讲的比较难懂,而且比其他书少了一俩个知识点,比如好像没有讲斯托尔滋(stolz)定理,实数的定义也不清楚。不过仍然不失为一本好书。能广泛被使用一定有它自己的一些优势。

2《数学分析》华东师范大学数学系著

师范类使用最多的书,课后习题编排的不错,也是考研用的比较多的一本书。课本最后讲了一些流形上的微积分。虽然是师范类的书,难度比上一本有一些降低,不过还是值得一看的。

3《数学分析》陈纪修等著

以上三本是考研用的最多的三本书。

4《数学分析》李成章,黄玉民

是南开大学一个系列里的数学分析分册,这套教材里的各本都经常被用到,总体还是不错的,是为教学改革后课时数减少后的数学系各门课编写的教材。

5《数学分析讲义》刘玉链

我的数学分析老师推荐的一本书,不过我没有看,最近应该出了新版,貌似是第五?版,最初是一本函授教材,写的应该比较详细易懂。不要因为是函授教材就看不起,事实上最初的函授工作都是由最好的教授做的。细说就远了,总之可以看看。

6《数学分析》曹之江等著

内蒙古大学数理基地的教材,偏重于物理的实现,会打一个很好的基础,不会盲目的向n维扩展。适合初学者。国家精品课程的课本。

7《数学分析新讲》张筑生

公认是一本新观点的书,课后没有习题。材料的处理相当新颖。作者已经去世。

8《数学分析教程》常庚哲,史济怀著

中国科学技术大学教材,课后习题极难。

9《数学分析》徐森林著

与上面一本同出一门,清华大学教材。程度好的同学可以试着看一看。书很厚,看起来很慢。

10《数学分析简明教程》邓东翱著

也是一本可以经常看到的书,作者已经去世。国家精品课程的课本。

11许绍浦《数学分析教程》南京大学出版社

这些书应该够了,其他书不一一列举。从中选择一本当作课本就可以了。

《九章算术》的内容十分丰富,全书采用问题集的形式,收有246个与生产、 《九章算术》

生活实践有联系的应用问题,其中每道题有问(题目)、答(答案)、术(解题的步骤,但没有证明),有的是一题一术,有的是多题一术或一题多术。这些问题依照性质和解法分别隶属于方田、粟米、衰(音cui)分、少广、商功、均输、盈不足、方程及勾股九章如下所示。原作有插图,今传本已只剩下正文了。 《九章算术》共收有246个数学问题,分为九章、它们的主要内容分别是: 第一章“方田”:田亩面积计算;提出了各种多边形、圆、弓形等的面积公式;分数的通分、约分和加减乘除四则运算的完整法则。后者比欧洲早1400多年。 第二章“粟米”:谷物粮食的按比例折换;提出比例算法,称为今有术;衰分章提出比例分配法则,称为衰分术; 第三章“衰分”:比例分配问题;介绍了开平方、开立方的方法,其程序与现今程序基本一致。这是世界上最早的多位数和分数开方法则。它奠定了中国在高次方程数值解法方面长期领先世界的基础。 第四章“少广”:已知面积、体积,反求其一边长和径长等; 第五章“商功”:土石工程、体积计算;除给出了各种立体体积公式外,还有工程分配方法; 第六章“均输”:合理摊派赋税;用衰分术解决赋役的合理负担问题。今有术、衰分术及其应用方法,构成了包括今天正、反比例、比例分配、复比例、连锁比例在内的整套比例理论。西方直到15世纪末以后才形成类似的全套方法。 第七章“盈不足”:即双设法问题;提出了盈不足、盈适足和不足适足、两盈和两不足三种类型的盈亏问题,以及若干可以通过两次假设化为盈不足问题的一般问题的解法。这也是处于世界领先地位的成果,传到西方后,影响极大。 第八章“方程”:一次方程组问题;采用分离系数的方法表示线性方程组, 勾股定理求解

相当于现在的矩阵;解线性方程组时使用的直除法,与矩阵的初等变换一致。这是世界上最早的完整的线性方程组的解法。在西方,直到17世纪才由莱布尼兹提出完整的线性方程的解法法则。这一章还引进和使用了负数,并提出了正负术——正负数的加减法则,与现今代数中法则完全相同;解线性方程组时实际还施行了正负数的乘除法。这是世界数学史上一项重大的成就,第一次突破了正数的范围,扩展了数系。外国则到7世纪印度的婆罗摩及多才认识负数。 第九章“勾股”:利用勾股定理求解的各种问题。其中的绝大多数内容是与当时的社会生活密切相关的。提出了勾股数问题的通解公式:若a、b、c分别是勾股形的勾、股、弦,则,m>n。在西方,毕达哥拉斯、欧几里得等仅得到了这个公式的几种特殊情况,直到3世纪的丢番图才取得相近的结果,这已比《九章算术》晚约3个世纪了。勾股章还有些内容,在西方却还是近代的事。例如勾股章最后一题给出的一组公式,在国外到19世纪末才由美国的数论学家迪克森得出。

世界上数学名著很多,可以根据需要阅读。中国古代数学名著有《九章算术》、《周髀算经》。国外数学名著有《自然哲学之数学原理》、《算术研究》、《微积分学教程》、《曲面论》、《交换代数》等。多学数学名著,可以让你发现前人是怎么一步一步走过来的,怎么计算过来的。

《九章算术》介绍

《九章算术》是中国古代张苍、耿寿昌所撰写的一部数学专著。是《算经十书》中最重要的一部,成于公元一世纪左右。其作者已不可考。一般认为它是经历代各家的增补修订,而逐渐成为现今定本的,西汉的张苍、耿寿昌曾经做过增补和整理,其时大体已成定本。最后成书最迟在东汉前期,现今流传的大多是在三国时期魏元帝景元四年(263年),刘徽为《九章》所作的注本。

《九章算术》内容十分丰富,全书总结了战国、秦、汉时期的数学成就。同时,《九章算术》在数学上还有其独到的成就,不仅最早提到分数问题,也首先记录了盈不足等问题,《方程》章还在世界数学史上首次阐述了负数及其加减运算法则。它是一本综合性的历史著作,是当时世界上最简练有效的应用数学,它的出现标志中国古代数学形成了完整的体系。

《周髀算经》介绍

《周髀算经》原名《周髀》,算经的十书之一,是中国最古老的天文学和数学著作,约成书于公元前1世纪,主要阐明当时的盖天说和四分历法。唐初规定它为国子监明算科的教材之一,故改名《周髀算经》。

《周髀算经》采用最简便可行的方法确定天文历法,揭示日月星辰的运行规律,囊括四季更替,气候变化,包涵南北有极,昼夜相推的道理。给后来者生活作息提供有力的保障,自此以后历代数学家无不以《周髀算经》为参考,在此基础上不断创新和发展。

《周髀算经》是中国现存最早的数学典籍 《九章算术》约成书于公元纪元前后,系统总结了我国从先秦到西汉中期的数学成就。 南北朝是中国古代数学的蓬勃发展时期,计有《孙子算经》、《夏侯阳算经》、《张丘建算经》等算学著作问世。 贾宪在《黄帝九章算法细草》中提出开任意高次幂的“增乘开方法”,遗憾的是贾宪的《黄帝九章算法细草》书稿已佚。 秦九韶是南宋时期杰出的数学家。1247年,他在《数书九章》中将“增乘开方法”加以推广,论述了高次方程的数值解法, 并且例举20多个取材于实践的高次方程的解法(最高为十次方程)。 李冶于1248年发表《测圆海镜》,该书是首部系统论述“天元术”(一元高次方程)的著作,在数学史上具有里程碑意义。 公元1261年,南宋杨辉(生卒年代不详)在《详解九章算法》中用“垛积术”求出几类高阶等差级数之和。公元1274年他在《乘除通变本末》中还叙述了“九归捷法”,介绍了筹算乘除的各种运算法。 公元1303年,元代朱世杰(生卒年代不详)著《四元玉鉴》。 14世纪中、后叶明王朝建立后统治者奉行以八股文为特征的科举制度,在国家科举考试中大幅度消减数学内容,自此中国古代数学便开始呈现全面衰退之势。 明代珠算开始普及于中国。1592年程大位编撰的《直指算法统宗》是一部集珠算理论之大成的著作。徐光启应用西方的逻辑推理方法论证了中国的勾股测望术,因此而撰写了《测量异同》和《勾股义》两篇著作。邓玉函编译的《大测》〔2卷〕、《割圆八线表》〔6卷〕和罗雅谷的《测量全义》 〔10卷〕是介绍西方三角学的著作。 华罗庚是蜚声中外的数学家。他是中国解析数论、典型群、矩阵几何学、自守与多复便函数等多方面研究的创始人与开拓者。。他共发表学术论文约二百篇,专著有《堆垒素数论》、《高等数学引论》、《指数和的估计及其在数论中的应用》、《典型群》、《多复变数函数论中的典型域的分析》、《数论引导》、《数值积分及其应用》、《从单位圆谈起》、《优选法》、《二阶两个自变数两个未知函数的常系数偏微分方程》、《华罗庚论文选集》等12部。

《周髀算经》是中国现存最早的一部数学典籍,成书时间大约在两汉之间(纪元之后)。也有史家认为它的出现更早,是孕于周而成于西汉,甚至更有人说它出现在纪元前1000年。《九章算术》约成书于公元纪元前后,它系统地总结了我国从先秦到西汉中期的数学成就。该书作者已无从查考,只知道西汉著名数学家张苍、耿寿昌等人曾经对它进行过增订删补。全书分做九章,一共搜集了246个数学问题,按解题的方法和应用的范围分为九大类,每一大类作为一章。南北朝是中国古代数学的蓬勃发展时期,计有《孙子算经》、《夏侯阳算经》、《张丘建算经》等算学著作问世。》、《海岛算经》等10部数学著作。所以当时的数学教育制度对继承古代数学经典是有积极意义的。公元600年,隋代刘焯在制订《皇极历》时,在世界上最早提出了等间距二次内插公式;唐代僧一行在其《大衍历》中将其发展为不等间距二次内插公式。贾宪在《黄帝九章算法细草》中提出开任意高次幂的“增乘开方法”,同样的方法至1819年才由英国人霍纳发现;贾宪的二项式定理系数表与17世纪欧洲出现的“巴斯加三角”是类似的。遗憾的是贾宪的《黄帝九章算法细草》书稿已佚。秦九韶是南宋时期杰出的数学家。1247年,他在《数书九章》中将“增乘开方法”加以推广,论述了高次方程的数值解法,并且例举20多个取材于实践的高次方程的解法(最高为十次方程)。16世纪意大利人菲尔洛才提出三次方程的解法。另外,秦九韶还对一次同余式理论进行过研究。李冶于1248年发表《测圆海镜》,该书是首部系统论述“天元术”(一元高次方程)的著作,在数学史上具有里程碑意义。尤其难得的是,在此书的序言中,李冶公开批判轻视科学实践活动,将数学贬为“贱技”、“玩物”等长期存在的士风谬论。公元1261年,南宋杨辉(生卒年代不详)在《详解九章算法》中用“垛积术”求出几类高阶等差级数之和。公元1274年他在《乘除通变本末》中还叙述了“九归捷法”,介绍了筹算乘除的各种运算法。公元1280年,元代王恂、郭守敬等制订《授时历》时,列出了三次差的内插公式。郭守敬还运用几何方法求出相当于现在球面三角的两个公式。公元1303年,元代朱世杰(生卒年代不详)著《四元玉鉴》,他把“天元术”推广为“四元术”(四元高次联立方程),并提出消元的解法,欧洲到公元1775年法国人别朱(Bezout)才提出同样的解法。朱世杰还对各有限项级数求和问题进行了研究,在此基础上得出了高次差的内插公式,欧洲到公元1670年英国人格里高利(Gregory)和公元1676一1678年间牛顿(Newton)才提出内插法的一般公式。14世纪中、后叶明王朝建立以后,统治者奉行以八股文为特征的科举制度,在国家科举考试中大幅度消减数学内容,于是自此中国古代数学便开始呈现全面衰退之势。明代珠算开始普及于中国。1592年程大位编撰的《直指算法统宗》是一部集珠算理论之大成的著作。但是有人认为,珠算的普及是抑制建立在筹算基础之上的中国古代数学进一步发展的主要原因之一。由于演算天文历法的需要,自16世纪末开始,来华的西方传教士便将西方一些数学知识传入中国。数学家徐光启向意大利传教士利马窦学习西方数学知识,而且他们还合译了《几何原本》的前6卷(1607年完成)。徐光启应用西方的逻辑推理方法论证了中国的勾股测望术,因此而撰写了《测量异同》和《勾股义》两篇著作。邓玉函编译的《大测》〔2卷〕、《割圆八线表》〔6卷〕和罗雅谷的《测量全义》〔10卷〕是介绍西方三角学的著作。

是《周髀算经》和《九章算术》 。

《周髀算经》原名《周髀》,是算经的十书之一。中国最古老的天文学和数学著作,约成书于公元前1世纪,主要阐明当时的盖天说和四分历法。唐初规定它为国子监明算科的教材之一,故改名《周髀算经》。《周髀算经》在数学上的主要成就是介绍了勾股定理及其在测量上的应用以及怎样引用到天文计算。《周髀算经》记载了勾股定理的公式与证明,相传是在西周由商高发现,故又有称之为商高定理;三国时代的赵爽对《周髀算经》内的勾股定理作出了详细注释,又给出了另外一个证明引。

《九章算术》其作者已不可考。一般认为它是经历代各家的增补修订,而逐渐成为现今定本的,西汉的张苍、耿寿昌曾经做过增补和整理,其时大体已成定本。最后成书最迟在东汉前期,现今流传的大多是在三国时期魏元帝景元四年(263年),刘徽为《九章》所作的注本。

它是中国古代第一部数学专著,是《算经十书》中最重要的一种,成于公元一世纪左右。该书内容十分丰富,系统总结了战国、秦、汉时期的数学成就。同时,《九章算术》在数学上还有其独到的成就,不仅最早提到分数问题,也首先记录了盈不足等问题,《方程》章还在世界数学史上首次阐述了负数及其加减运算法则。它是一本综合性的历史著作,是当时世界上最简练有效的应用数学,它的出现标志中国古代数学形成了完整的体系。

以上就是关于学数学有哪些名著必看全部的内容,包括:学数学有哪些名著必看、数学名著《九章算术》内容 急急急急!!!、世界三大数学名著等相关内容解答,如果想了解更多相关内容,可以关注我们,你们的支持是我们更新的动力!

转载请注明原文地址:https://juke.outofmemory.cn/read/3741966.html

最新回复(0)