简述单臂,双臂和全桥测量电路的异同点。

日耳曼语族2023-04-30  23

共同点:都是测量电阻的仪器。

区别:

1、原理不同:单桥内部只有一个桥臂回路,双桥有两个桥臂回路:内臂和外臂,外臂用于测量被测电阻的数值,内臂用于消除引线电阻影响。

2、用途不同:单桥一般用于测量10欧以上的电阻,双桥一般测量小于10欧的电阻。

3、测量端钮数不同:单桥两个测量端,双桥4个测量端。

4、测量电源不同:单桥一般电压在3v以上,电流较小,双桥一般电压小于15v,电流较大。

5、内部结构不同:单桥三个测量桥臂一般为独立结构,双桥的内臂和外臂需要联动调节,阻值保持同步,结构比单桥复杂。

扩展资料:

单臂电桥使用注意事项:

1、根据被测电阻的大小,选择适当的桥臂比率。在选择比率臂倍率时,应使比较臂的4挡电阻都能用上。 这样容易把电桥调到平衡,保证测量结果的有效数字,提高其测量精度。

2、电流线路接通后,按钮不可长时间按下,以免标准电阻因长时间通过电流而使阻值改变。

3、测量电感线圈的直流电阻时,应先按下电源按钮,再按检流计按钮,测量结束,应先断开检流计按钮再断开电源,以免被测线圈的自感电动势造成检流计的损坏。

4、发现电池电压不足时应及时更换,否则将影响检流计的灵敏度,外接电源时应符合说明书上规定电压值,若长时间不用,应取出电池。

参考资料来源:百度百科-单臂电桥

参考资料来源:百度百科-双臂电桥

参考资料来源:百度百科-全桥测量法

四、学习逆变(DC-AC)电路和LLC的基本工作原理。

全桥逆变电路包括单相全桥逆变电路和三相全桥逆变电路,逆变的主要功能是把直流电逆变成某一频率或可变频率的交流电供给负载。

单相半桥逆变电路基本工作原理

第一阶段,VT1基极脉冲信号Ub1为高电平,VT2的Ub2为低电平,VT1导通、VT2关断,A点电压为Ud,由于B点电压为Ud/2,故R、L两端的电压Uo为Ud/2,VT1导通后有电流流过R、L,电流途径是:Ud+→VT1→L、R→B点→C2→Ud-,因为L对变化电流的阻碍作用,流过R、L的电流I0将慢慢增大。

 第二阶段,VT1的Ubl为低电平,VT2的Ub2为高电平,VT1关断,流过L的电流突然变小,L马上产生左正右负的电动势,该电动势通过VD2形成电流回路,电流途径是:L左正→R→C2→VD2→L右负→VD2→U-,该电流方向仍是由右往左,但电流随L上的电动势下降而减小,在t3时刻电流I0变为0。在t2~t3期间,由于L产生左正右负电动势,A点电压较B点电压低,即R、L两端的电压Uo极性发生了改变,变为左正右负,由于A点电压很低,虽然VT2的Ub2为高电平,VT2仍无法导通。

第三阶段,VT1基极脉冲信号Ub1仍为低电平,VT2的Ub2仍为高电平,由于此时L上的左正右负电动势已消失,VT2开始导通,有电流流过R、L,电流途径是:C2上正(C2相当于一个大小为Ud/2的电源)→R→L→VT2→C2下负,该电流与t1~t3期间的电流相反,由于L的阻碍作用,该电流慢慢增大。因为B点电压为Ud/2,A点电压为0(忽略VT2导通压降),故R、L两端的电压Uo大小为Ud/2,极性是左正右负。

第四阶段,VT1的Ub1为高电平,VT2的Ub2为低电平,VT2关断,流过L的电流突然变小,L马上产生左负右正的电动势,该电动势通过VD1形成电流回路,电流途径是:L右正→VD1→C1→R→L左负,该电流方向由左往右,但电流随L上电动势下降而减小,在t5时刻电流I0变为0。在t4~t5期间,由于L产生左负右正电动势,A点电压较B点电压高,即Uo极性仍是左负右正,另外因为A点电压很高,虽然VT1的Ub1为高电平,VT1仍无法导通。

单相半桥逆变电路图

半桥式逆变电路结构简单,但负载两端得到的电压为直流电源电压的一半,并且直流侧需采用两个电容器串联来均压。半桥式逆变电路常用在几千瓦以下的小功率逆变设备中。

单相全桥逆变电路基本工作原理

工作原理:①第一阶段,VT1、VT4的基极控制脉冲都为高电平,VT1、VT4都导通,A点通过VT1与Ud正端连接,B点通过VT4与Ud负端连接,故R、L两端的电压Uo大小与Ud相等,极性为左正右负(为正压),流过R、L电流的方向是:Ud+→VT1→R、L→VT4→Ud-。

②第二阶段,VT1的Ub1为高电平,VT4的Ub4为低电平,VT1导通,VT4关断,流过L的电流突然变小,L马上产生左负右正的电动势,该电动势通过VD3形成电流回路,电流途径是:L右正→VD3→VT1→R→L左负,该电流方向仍是由左往右。由于VT1、VD3都导通,A点和B点都与Ud正端连接,即UA= UB,R、L两端的电压Uo为0(Uo=UA-UB)。在此期间,VT3的Ub3也为高电平,但因VD3的导通使VT3的c、e极电压相等,VT3无法导通。

在第三阶段,VT2、VT3的基极控制脉冲都为高电平,在此期间开始一段时间内,L还未能完全释放能量,还有左负右正电动势,但VT1因基极变为低电平而截止,L的电动势转而经VD3、VD2对直流侧电容C充电,充电电流途径是:L右正→VD3→C→VD2→R→L左负,VD3、VD2的导通使VT2、VT3不能导通,A点通过VD2与Ud负端连接,B点通过VD3与Ud正端连接,故R、L两端的电压Uo大小与Ud相等,极性为左负右正(为负压),当L上的电动势下降到与Ud相等时,无法继续对C充电,VD3、VD2截止,VT2、VT3马上导通,有电流流过R、L,电流的方向是:Ud+→VT3→L、R→VT2→Ud-。

在第四阶段,VT2的Ub2为高电平,VT3的Ub3为低电平,VT2导通,VT3关断,流过L的电流突然变小,L马上产生左正右负的电动势,该电动势通过VD4形成电流回路,电流途径是:L左正→R→VT2→VD4→L右负,该电流方向是由右往左。由于VT2、VD4都导通,A点和B点都与Ud负端连接,即UA=UB,R、L两端的电压Uo为0(Uo= UA-UB)。在此期间,VT4的Ub4也为高电平,但因VD4的导通使VT4的c、e极电压相等,VT4无法导通。之后进入下一个循环。

半桥电路和全桥电路的频率关系取决于它们所使用的开关器件类型和控制方式。

在半桥电路中,只有一个开关管被用来控制负载。当该开关管导通时,负载与正极相连;当该开关管截止时,负载则断开。因此,在半桥电路中,输出信号的频率等于输入信号的频率。

而在全桥电路中,则需要两个对称工作的半桥电路组成。这样可以实现双向流动,并且能够更好地控制输出功率。在全桥电路中,如果采用PWM(脉宽调制)技术进行控制,则其输出信号的频率将由PWM波形产生器提供,并且通常会高于输入信号的频率。

总之,在不同类型的变换器或逆变器应用场合下,选择合适类型、参数和控制方式是非常重要的。

二者从本质就不同,整流桥就是将整流二极管封在一个壳内里,分全桥和半桥。而全桥是将连接好的桥式整流电路的四个二极管封在一起。全桥电路不容易产生泻流,而半桥电路在振荡转换之间容易泻有电流使波形变坏,产生干扰。

1、工作原理:如右图所示单相桥式逆变电路工作原理开关T1、T4闭合,T2、T3断开:u0=Ud; 开关T1、T4断开,T2、T3闭合:u0=- Ud; 当以频率fS交替切换开关T1、T4和 T2 、T3 时 , 则 在 负载电 阻 R上 获 得交变电压波形(正负交替的方波),其周期 Ts=1/fS,这样,就将直流电压E变成了 交流电压uo。uo含有各次谐波,如果想 得到正弦波电压,则可通过滤波器滤波 获得。主电路开关T1~T4,它实际是各种半导体开关器件的 一种理想模型。逆变电路中常用的开关器件有快速晶闸管、可关断晶闸管(GTO)、功率晶体管(GTR)、功率场效应晶体管(MOSFET)、绝缘栅晶体管(IGBT)。

2、在实际运用中,开关器件存在损耗:导通损耗(conduction losses) 和换相损耗(commutation losses) 和门极损耗(gate losses)。其中门极损耗极小可忽略不计,而导通损耗和换相损耗随着开关频率的增加而增加。

早期的大多数液晶彩电的开关电源输入电路普遍都采用带有大容量滤波电容器的全桥整流变换电路,而没有加PFC电路。这种电路的缺点是:开关电源输入级整流和大滤波电容产生的严重谐波电流危害电网的正常工作,这使输电线上的损耗增加,功率因数较低,浪费电能。

全桥电路的作用主要有:

1、作交流变换为直流的全波整流器;

2、作直流供电器具外接电源输入孔防外电源反接保护器;

3、作测量器具交,直流转换器;

4、主要作用是:无论输入端电压方向如何,输出端电压方向是固定的。

以上就是关于简述单臂,双臂和全桥测量电路的异同点。全部的内容,包括:简述单臂,双臂和全桥测量电路的异同点。、全桥逆变电路v的作用、半桥电路和全桥电路的频率关系等相关内容解答,如果想了解更多相关内容,可以关注我们,你们的支持是我们更新的动力!

转载请注明原文地址:https://juke.outofmemory.cn/read/3739050.html

最新回复(0)