代数式的定义是什么

奥卡福2023-04-30  32

代数式是一种常见的解析式,对变数字母仅限于有限次代数运算(加、减、乘、除、乘方、开方)的解析式称为代数式。

由数和表示数的字母经有限次加、减、乘、除、乘方和开方等代数运算所得的式子,或含有字母的数学表达式称为代数式。例如:ax+2b,-2/3,b^2/26,√a+√2等。

扩展资料:

代数式概念的形式与发展经历了一个漫长的历史发展过程,13世纪,斐波那契(Fibonacci,L)就开始采用字母表示运算对象,但尚未使用运算符号,韦达(Viete,F)于 1584-1589年间,引入数学符号系统,使代数成为关于方程的理论,因而人们普遍认为他是代数式的创始人。

笛卡儿(Descartes,R)对韦达的字母用法作了改进,用拉丁字母表中前面的字母 a,b,c, 表示已知数,用末尾的一些字母 x,y,z, 表示未知数,莱布尼茨(Leibniz,G,W)对各种符号记法进行了系统研究,发展并完善了代数式的表示方法。

代数式:由数和表示数的字母经有限次加、减、乘、除、乘方和开方等代数运算所得的式子。

1/4(ab)的意义:将ab的积分成四份,取其中一份。

有理式包括整式(除数中没有字母的有理式)和分式(除数中有字母且除数不为0的有理式)。这种代数式中对于字母只进行有限次加、减、乘、除和整数次乘方这些运算。

扩展资料:

把多项式中同类项合并成一项,叫做合并同类项。合并同类项的法则是:同类项的系数相加,所得的结果作为系数,字母和字母的指数不变。

括号前足“+”号,把括号和它前面的“+”号去掉,括号里各项都不变符号;括号前是“—”号,把括号和它前面的“—”号去掉,括号里各项都改变符号。

代数式由数和表示数的字母经有限次加、减、乘、除、乘方和开方等代数运算所得的式子,或含有字母的数学表达式称为代数式

单项式表示数或字母的积的式子叫做单项式

多项式若干个单项式的和组成的式子叫做多项式

单项式和多项式都是整式;而代数式可以不是整式,如分式,根式

单项式是字母和数的乘积,只有乘法,没有加减法;多项式是若干个单项式的和,有加减法

代数式的概念和分类如下::

代数式的概念:

(1)代数式:代数式是由运算符号(加、减、乘、除、乘方、开方)把数或表示数的字母连结而成的式子。单独的一个数或者一个字母也是代数式。

(2)代数式的值;用数值代替代数式里的字母,计算后所得的结果p叫做代数式的值。求代数式的值可以直接代入、计算。如果给出的代数式可以化简,要先化简再求值。

注意:

1、不包括等于号(=、≡)、不等号(≠、≤、≥、<、>、≮、≯)、约等号≈。

2、可以有绝对值。例如:|x|,|-225|等。

代数式的分类:

有理式

有理式包括整式(除数中没有字母的有理式)和分式(除数中有字母且除数不为0的有理式)。这种代数式中对于字母只进行有限次加、减、乘、除和整数次乘方这些运算。

整式有包括单项式(数字或字母的乘积,或者是单独的一个数字或字母)和多项式(若干个单项式的和)。

1、单项式

没有加减运算的整式叫做单项式。

单项式的系数:单项式中的数字因数叫做单项式(或字母因数)的数字系数,简称系数。

单项式的次数:一个单项式中,所有字母的指数的和叫做这个单项式的次数。

2、多项式

几个单项式的代数和叫做多项式;多项式中每个单项式叫做多项式的项。不含字母的项叫做常数项。

多项式的次数:多项式里,次数最高的项的次数,就是这个多项式的次数。齐次多项式:各项次数相同的多项式叫做齐次多项式。

不可约多项式:次数大于零的有理系数的多项式,不能分解为两个次数大于零的有理数系数多项式的乘积时,称为有理数范围内不可约多项式。实数范围内不可约多项式是一次或某些二次多项式,复数范同内不可约多项式是一次多项式。

对称多项式:在多元多项式中,如果任意两个元互相交换所得的结果都和原式相同,则称此多项式是关于这些元的对称多项式。

同类项:多项式中含有相同的字母,并且相同字母的指数也分别相同的项叫做同类项。

无理式

我们把含有字母的根式、字母的非整数次乘方,或者是带有非代数运算的式子叫做无理式。无理式包括根式和超越式。我们把可以化为被开方式为有理式,根指数不带字母的代数式称为根式。

我们把有理式与根式统称代数式,把根式以外的无理式叫做超越式。

代数式的运算:

合并同类项:把多项式中同类项合并成一项,叫做合并同类项。合并同类项的法则是:同类项的系数相加,所得的结果作为系数,字母和字母的指数不变。

去括号法则:括号前足“+”号,把括号和它前面的“+”号去掉,括号里各项都不变符号;括号前是“—”号,把括号和它前面的“—”号去掉,括号里各项都改变符号。

添括号法则:添括导后,括号前面是“+”号,括到括号里的各项都不变符号;添括号后,括号前面是“—”号,括到括号里的各项都改变符号。

以上就是关于代数式的定义是什么全部的内容,包括:代数式的定义是什么、代数式的意义是什么、代数式是什么意思等相关内容解答,如果想了解更多相关内容,可以关注我们,你们的支持是我们更新的动力!

转载请注明原文地址:https://juke.outofmemory.cn/read/3736329.html

最新回复(0)