带分数是假分数的另外一种形式。非零整数与真分数相加(负整数时与真分数相减)所成的分数(或真分数与假分数相加减化简后的分数)。
带分数是分数的一种形式,通常在正数的范围内讨论。
如果在实数部分内讨论,绝对值满足狭义的带分数定义的,就是广义的带分数。
带分数包含两个部分:整数部分和真分数部分。
带分数和假分数一一对应。
整数部分
如,三又四分之三,3是这个带分数的整数部分,3/4是这个带分数的分数部分。
注意:
1带分数的分数部分不能是假分数。
2带分数与字母相乘时要写成假分数的形式。
在代数学中,通常不用带分数,只用假分数。所以,带分数变得比较少见。
化假分数
分母不变,分子为整数部分乘分母的积再加上原分子的和。
计算法则
计算带分数加减法,要把整数部分与分数部分分别相加减。如果被减数的分数部分小于减数的分数部分,需要从被减数的整数部分拿出1化成假分数,和原来被减数的分数部分合并起来再减。
带分数计算乘除法时,需要化成假分数来计算。
带分数。
因为26/5等于5又5分之1,所以是带分数。
带分数的定义是:一个假分数,如果分子不是分母的倍数,它就可以写成由一个整数和一个真分数合成的数,这种形式的分数叫作带分数。
分子数值大于分母数值的分数,或者说值大于或等于1的分数,如2/3、5/5等。
整数和真分数合成的数通常叫做带分数,形式为:整数+真分数
假分数化成带分数:用分子除以分母,所得的商做带分数的整数部分、余数做分子、分母不变。
如:10/7=1又7分之3
10÷7=1……3
七分之八四化成整数是12,分数的定义和概念是:
(1)分数的定义
把单位“1”平均分成若干份,表示这样的一份或几份的数叫做分数。
(2)分数单位
把单位“1”平均分成若干份,表示其中一份的数叫做分数单位。
(3)分数的意义
在分数里,中间的横线叫做分数线;分数线下面的数叫做分母,表示把单位“1”平均分成多少份;分数线上面的数叫做分子,表示有这样的多少份。
(4)分数的基本性质
分数的分子和分母同时乘或者除以一个不为零的数,分数的大小不变。
2、分数的分类
分数分为真分数和假分数。
真分数分为整数和带分数。
(1)真分数:分子比分母小的分数叫做真分数,真分数小于1。
(2)假分数:分子比分母大或分子和分母相等的分数叫做假分数,假分数大于或者等于1。
(3)带分数:假分数可以写成整数与真分数合成的数,通常叫做带分数。
3、分数的读写
(1)真分数、假分数的读法和写法
①读法:先读分母、再读“分之”,后读分子。例如:$\frac{1}{2}$读作二分之一,$\frac{3}{2}$读作二分之三。
②写法:写真分数或假分数时,先写出分数线,再写分母,最后写分子。
(2)带分数的读法和写法
读法:先读带分数的整数部分,再读分数部分,并在两者之间加读“又”字。例如:$1\frac{1}{2}$读作:一又二分之一。
写法:写带分数时,先写带分数的整数部分,后写分数部分。
4、分数的大小比较
(1)约分
定义:把一个分数化成和它相等,但分子和分母都比较小的分数叫约分。
最简分数:分子和分母互质的分数叫做最简分数。
约分的方法
①逐次约分:用分子和分母的公因数(1除外)逐次去除分子和分母,直到得出最简分数为止。
②一次约分:用分子和分母的最大公因数去除分子和分母,直接得到最简分数。
③特殊分数的约分:分子、分母末尾有零的,可以先划去同样多的0,再约分。
(2)通分
定义:把异分母分数分别化成和原来分数相等的同分母分数叫通分。
通分的方法:先求出几个分数的分母的最小公倍数,把它作为这几个分数的公分母,然后依据分数的基本性质,把原分数分别化成以公分母为分母的分数。
(3)分数的大小比较
①同分母分数:分母相同的两个分数,分子大的分数比较大。
②同分子分数:分子相同的两个分数,分母小的分数比较大。
③分子分母都不相同的分数:先通分,把它们化成分母相同的分数,然后进行比较。也可以先把各个分数分别化成小数后再比较大小。
④带分数:先比较整数部分,整数部分大的那个带分数就大,如果整数部分相同,再比较它们的分数部分,分数部分大的那个带分数就大。
⑤假分数:将假分数化成带分数或整数后再比较大小。
以上就是关于代分数是什么 到底是什么全部的内容,包括:代分数是什么 到底是什么、26/5是带分数还是整数、什么叫假分数什么叫带分数它们之间的定义是什么有什么特征怎么把假分数化成带分数等相关内容解答,如果想了解更多相关内容,可以关注我们,你们的支持是我们更新的动力!