数学中三等分线是什么意思

孙翊2023-04-29  26

看是 角度的三等分线 还是边长的三等分线。

(1)如果是角度的三等分线:则把一个角用2条线将它3等分,那么那两条线就是三等分线

(2)如果是边长的三等分线:则把一条边平均分成三等份的点,与这条边对应顶点的连线

三等分点释义:是把一条线段平均分成三等分的点。

是把一条线段平均分成三等分的点。以该线段为中线做一任意三角形,画出三角形的另一条中线,那么两中线交于点A,以该点为圆心,该线段到三角形底边的距离为半径作圆,交于该线段于点B,则点A,B就是该线段的三等分点。

方法一

已知AB线段,做AB为底的等边三角形,做AB的垂直平分线,设上面一点是C,再做BC的垂直平分线,两平分线相交D吧,设AB中点为E,那么DE是EC的三分之一,延长CE,然后取EF等于ED,可以看出三角形ADF是等边三角形,做AD的垂直平分线,交AE于一点,设为G,AG就是AB的三分之一,如上做另一边的三分之一,即可。

方法二

把已知线段的一个端点作为顶点,任意作延长线,在延长线上从顶点开始任意截取相等的连续的三段,形成另一条线段,然后把已知线与你作的线段的另一个端点相连,形成三角形,过三等分点做底边的平行线,交已知线段上的点就是所要的三等分点。

古希腊三个著名问题之一的三等分角,现在美国就连许多没学过数学的人也都知道.美国的数学杂志社和以教书为职业的数学会员,每年总要收到许多“角的三等分者”的来信;并且,在报纸上常见到:某人已经最终地“解决了”这个不可捉摸的问题.这个问题确实是三个著名的问题中最容易理解的一个,因为二等分角是那么容易,这就自然会使人们想到三等分角为什么不同样的容易呢?

用欧几里得工具,将一线段任意等分是件简单的事;也许古希腊人在求解类似的任意等分角的问题时,提出了三等分角问题;也许(更有可能)这问题是在作正九边形时产生的,在那里,要三等分一个60°角.

在研究三等分角问题时,看来希腊人首先把它们归结成所谓斜向(verging problem)问题.任何锐角ABC(参看图31)可被取作矩形BCAD的对角线BA和边BC的夹角.考虑过B点的一条线,它交CA于E,交DA之延长线于F,且使得EF=2(BA).令G为EF之中点,则

EG=GF=GA=BA,

从中得到:

∠ABG=∠AGB=∠GAF+∠GFA=2∠GFA=2∠GBC,

并且BEF三等分∠ABC.因此,这个问题被归结为在DA的延长线和AC之间,作一给定长度2(BA)的线段EF,使得EF斜向B点.

如果与欧几里得的假定相反,允许在我们的直尺上标出一线段E’F’=2(BA),然后调整直尺的位置,使得它过B点,并且,E’在AC上,F’在DA的延长线上;则∠ABC被三等分.对直尺的这种不按规定的使用,也可以看作是:插入原则(the insertion principle)的一种应用.这一原则的其它应用,参看问题研究4.6.

为了解三等分角归结成的斜向问题,有许多高次平面曲线已被发现.这些高次平面曲线中最古老的一个是尼科梅德斯(约公元前240年)发现的蚌线.设c为一条直线,而O为c外任何一点,P为c上任何一点,在PO的延长线上截PQ等于给定的固定长度k.于是,当P沿着c移动时,Q的轨迹是c对于极点O和常数k的蚌线(conchoid)(实际上,只是该蚌线的一支).设计个画蚌线的工具并不难①,用这样一个工具,就可以很容易地三等分角.这样,令∠AOB为任何给定的锐角,作直线MN垂直于OA,截OA于D,截OB于L(如图32所示).然后,对极点O和常数2(OL),作MN的蚌线.在L点作OA的平行线,交蚌线于C.则OC三等分∠AOB.

借助于二次曲线可以三等分一个一般的角,早期希腊人还不知道这一方法.对于这种方法的最早证明是帕普斯(Pappus,约公元300年).利用二次曲线三等分角的两种方法在问题研究4.8中可以找到.

有一些超越(非代数的)曲线,它们不仅能够对一个给定的角三等分,而且能任意等分.在这这样的曲线中有:伊利斯的希皮阿斯(Hippias,约公元前425年)发明的割圆曲线(quadratrix)和阿基米得螺线(spiral of Archimeds).这两种曲线也能解圆的求积问题.关于割圆曲线在三等分角和化圆为方问题上的应用,见问题研究4.10.

多年来,为了解三等分角问题,已经设计出许多机械装置、联动机械和复合圆规.①参看R.C.Yates.The Trisection Prolem.其中有一个有趣的工具叫做战斧,不知道是谁发明的,但是在1835年的一本书中讲述了这种工具.要制做一个战斧,先从被点S和T三等分的线段RU开始,以SU为直径作一半圆,再作SV垂直于RU,如图33所示.用战斧三等分∠ABC时,将这一工具放在该角上,使R落在BA上,SV通过B点,半圆与BC相切于D.于是证明:△RSB,△TSB,△TDB都全等,所以,BS和BT三等分给定的角.可以用直尺和圆规在描图纸上绘出战斧,然后调整到给定的角上.在这种条件下,我们可以说用直角和圆规三等分一个角(用两个战斧,则可以五等分一个角).

欧几里得工具虽然不能精确地三等分任意角,但是用这些工具的作图方法,能作出相当好的近似的三等分.一个卓越的例子是著名的蚀刻师、画家A.丢勒(Albrecht Durer)于1525年给出的作图方法.取给定的∠AOB为一个圆的圆心角(参看图34),设C为弦AB的靠近B点的三等分点.在C点作AB的垂线交圆于D.以B为圆心,以BD为半径,作弧交AB于E.设令F为EC的靠近E点的三等分点,再以B为圆心,以BF为半径,作弧交圆于G.那么,OG就是∠AOB的近似的三等分线.我们能够证明:三等分中的误差随着∠AOB的增大而增大;但是,对于60°的角大约只差1〃,对于90°角大约只差18〃.

三等分点坐标公式:A(X1,Y1),B(X2,Y2)。

设P是AB的三等分点,且AP=AB/3。那么P坐标是:x=(x1+1/2 x2)/(1+1/2)=(2x1+x2)/3,y=(y1+1/2 y2)/(1+1/2)=(2y1+y2)/3。

线段(segment),技术制图中的一般规定术语,是指一个或一个以上不同线素组成一段连续的或不连续的图线,如实线的线段或由长划、短间隔、点、短间隔、点、短间隔组成的双点长划线的线段。

等分点定理

三角形的三等分点定理是三角形中线的交点到底边中点的距离是中线的三分之一,三等分点是把一条线段平均分成三等分的点。

三角形是由同一平面内不在同一直线上的三条线段首尾顺次连接所组成的封闭图形,在数学、建筑学有应用。

其中锐角三角形和钝角三角形统称为斜三角形。等边三角形是特殊的等腰三角形,所以等边三角形拥有等腰三角形的一切性质。

以上就是关于数学中三等分线是什么意思全部的内容,包括:数学中三等分线是什么意思、什么是三等分点、三等分线怎么分等相关内容解答,如果想了解更多相关内容,可以关注我们,你们的支持是我们更新的动力!

转载请注明原文地址:https://juke.outofmemory.cn/read/3725510.html

最新回复(0)