大数据是指在一定时间内,常规软件工具无法捕捉、管理和处理的数据集合。它是一种海量、高增长、多元化的信息资产,需要一种新的处理模式,以具备更强的决策、洞察和流程优化能力。
大数据技术的战略意义不在于掌握庞大的数据信息,而在于对这些有意义的数据进行专业的处理。换句话说,如果把大数据比作一个行业,这个行业盈利的关键在于提高数据的“处理能力”,通过“处理”实现数据的“增值”。
从技术上讲,大数据和云计算的关系就像硬币的正反面一样密不可分。大数据不能用单台计算机处理,必须采用分布式架构。其特点在于海量数据的分布式数据挖掘。但它必须依赖云计算分布式处理、分布式数据库、云存储和虚拟化技术。
扩展信息:
大数据只是现阶段互联网的一个表征或特征。没有必要将其神话或保持敬畏。在以云计算为代表的技术创新背景下,这些原本看似难以收集和使用的数据开始被轻松使用。通过各行各业的不断创新,大数据将逐渐为人类创造更多的价值。
是体现大数据技术价值的手段,是进步的基石。这里从云计算、分布式处理技术、存储技术、感知技术的发展,阐述大数据从采集、处理、存储到形成结果的全过程。
实践是大数据的终极价值。在这里,我们从互联网大数据、政府大数据、企业大数据、个人大数据四个方面来描绘大数据的美好图景和将要实现的蓝图。
中国发展门户网讯 随着新一代信息技术的迅猛发展和深入应用,数据的数量、规模不断扩大,数据已日益成为土地、资本之后的又一种重要的生产要素,和各个国家和地区争夺的重要资源,谁掌握数据的主动权和主导权,谁就能赢得未来。奥巴马政府将数据定义为“未来的新石油”,认为一个国家拥有数据的规模、活性及解释运用的能力将成为综合国力的重要组成部分,对数据的占有和控制将成为继陆权、海权、空权之外的另一个国家核心权力。此后,一个全新的概念——大数据开始风靡全球。
大数据的概念与内涵
“大数据”的概念早已有之,1980年著名未来学家阿尔文•托夫勒便在《第三次浪潮》一书中,将大数据热情地赞颂为“第三次浪潮的华彩乐章”。但是直到近几年,“大数据”才与“云计算”、“物联网”一道,成为互联网信息技术行业的流行词汇。2008年,在谷歌成立10周年之际, 著名的《自然》杂志出版了一期专刊,专门讨论未来的大数据处理相关的一系列技术问题和挑战,其中就提出了“Big Data”的概念。2011年5 月,在“云计算相遇大数据” 为主题的EMC World 2011 会议中,EMC 也抛出了Big Data概念。所以,很多人认为,2011年是大数据元年。
此后,诸多专家、机构从不同角度提出了对大数据理解。当然,由于大数据本身具有较强的抽象性,目前国际上尚没有一个统一公认的定义。维基百科认为大数据是超过当前现有的数据库系统或数据库管理工具处理能力,处理时间超过客户能容忍时间的大规模复杂数据集。全球排名第一的企业数据集成软件商Informatica认为大数据包括海量数据和复杂数据类型,其规模超过传统数据库系统进行管理和处理的能力。亚马逊网络服务(AWS)、大数据科学家JohnRauser提到一个简单的定义:大数据就是任何超过了一台计算机处理能力的庞大数据量。百度搜索的定义为:"大数据"是一个体量特别大,数据类别特别大的数据集,并且这样的数据集无法用传统数据库工具对其内容进行抓取、管理和处理。互联网周刊的定义为:"大数据"的概念远不止大量的数据(TB)和处理大量数据的技术,或者所谓的"4个V"之类的简单概念,而是涵盖了人们在大规模数据的基础上可以做的事情,而这些事情在小规模数据的基础上是无法实现的。换句话说,大数据让我们以一种前所未有的方式,通过对海量数据进行分析,获得有巨大价值的产品和服务,或深刻的洞见,最终形成变革之力。
综合上述不同的定义,我们认为,大数据至少应包括以下两个方面:一是数量巨大,二是无法使用传统工具处理。因此,大数据不是关于如何定义,最重要的是如何使用。它强调的不仅是数据的规模,更强调从海量数据中快速获得有价值信息和知识的能力。
大数据4V特征
一般认为,大数据主要具有以下四个方面的典型特征:规模性(Volume)、多样性(Varity)、高速性(Velocity)和价值性(Value),即所谓的“4V”。
1.规模性。大数据的特征首先就体现为“数量大”,存储单位从过去的GB到TB,直至PB、EB。随着信息技术的高速发展,数据开始爆发性增长。社交网络(微博、推特、脸书)、移动网络、各种智能终端等,都成为数据的来源。淘宝网近4亿的会员每天产生的商品交易数据约20TB;脸书约10亿的用户每天产生的日志数据超过300TB。迫切需要智能的算法、强大的数据处理平台和新的数据处理技术,来统计、分析、预测和实时处理如此大规模的数据。
2.多样性。广泛的数据来源,决定了大数据形式的多样性。大数据大体可分为三类:一是结构化数据,如财务系统数据、信息管理系统数据、医疗系统数据等,其特点是数据间因果关系强;二是非结构化的数据,如视频、、音频等,其特点是数据间没有因果关系;三是半结构化数据,如HTML文档、邮件、网页等,其特点是数据问的因果关系弱。
3.高速性。与以往的档案、广播、报纸等传统数据载体不同,大数据的交换和传播是通过互联网、云计算等方式实现的,远比传统媒介的信息交换和传播速度快捷。大数据与海量数据的重要区别,除了大数据的数据规模更大以外,大数据对处理数据的响应速度有更严格的要求。实时分析而非批量分析,数据输入、处理与丢弃立刻见效,几乎无延迟。数据的增长速度和处理速度是大数据高速性的重要体现。
4价值性。这也是大数据的核心特征。现实世界所产生的数据中,有价值的数据所占比例很小。相比于传统的小数据,大数据最大的价值在于通过从大量不相关的各种类型的数据中,挖掘出对未来趋势与模式预测分析有价值的数据,并通过机器学习方法、人工智能方法或数据挖掘方法深度分析,发现新规律和新知识,并运用于农业、金融、医疗等各个领域,从而最终达到改善社会治理、提高生产效率、推进科学研究的效果。
大数据六大发展趋势
虽然大数据目前仍处在发展的起步阶段,尚存在着诸多的困难与挑战,但我们相信,随着时间的推移,大数据未来的发展前景非常可观。
1.数据将呈现指数级增长
近年来,随着社交网络、移动互联、电子商务、互联网和云计算的兴起,音频、视频、图像、日志等各类数据正在以指数级增长。据有关资料显示,2011年,全球数据规模为18ZB,可以填满575亿个32GB的iPad,这些iPad可以在中国修建两座长城。到2020年,全球数据将达到40ZB,如果把它们全部存入蓝光光盘,这些光盘和424艘尼米兹号航母重量相当。美国互联网数据中心则指出,互联网上的数据每年将增长50%,每两年便将翻一番,目前世界上90%以上的数据是最近几年才产生的。
2.数据将成为最有价值的资源
在大数据时代,数据成为继土地、劳动、资本之后的新要素,构成企业未来发展的核心竞争力。《华尔街日报》在一份题为《大数据,大影响》的报告宣传,数据已经成为一种新的资产类别,就像货币或黄金一样。IBM执行总裁罗睿兰认为指出,“数据将成为一切行业当中决定胜负的根本因素,最终数据将成为人类至关重要的自然资源。”随着大数据应用的不断发展,我们有理由相信大数据将成为机构和企业的重要资产和争夺的焦点谷歌、苹果、亚马逊、阿里巴巴、腾讯等互联网巨头正在运用大数据力量获得商业上更大的成功,并且将会继续通过大数据来提升自己的竞争力。
3.大数据和传统行业智能融合
通过对大数据收集、整理、分析、挖掘, 我们不仅可以发现城市治理难题,掌握经济运行趋势,还能够驱动精确设计和精确生产模式,引领服务业的精确化和增值化,创造互动的创意产业新形态。麦当劳、肯德基以及苹果公司等旗舰专卖店的位置都是建立在数据分析基础之上的精准选址。百度、阿里、腾讯等通过对海量数据的掌握和分析,为用户提供更加专业化和个性化的服务。在智慧城市建设不断深入的情况下,大数据必将在智慧城市中发挥越来越重要的作用。由城市数字化到智慧城市,关键是要实现对数字信息的智慧处理,其核心是引入了大数据处理技术,大数据将成为智慧城市的核心智慧引擎。智慧金融、智慧安防、智慧医疗、智慧教育、智慧交通、智慧城管等,无不是大数据和传统产业融合的重要领域。
4.数据将越来越开放
大数据是人类的共同资源、共同财富,数据开放共享是不可逆转的历史潮流。随着各国政府和企业对开放数据带来的社会效益和商业价值认识的不断提升,全球必将很快掀起一股数据开放的热潮。事实上,大数据的发展需要全世界、全人类的共同协作,变私有大数据为公共大数据,最终实现私有、企业自有、行业自有的全球性大数据整合,才不至形成一个个毫无价值的“数据孤岛”。大数据越关联越有价值,越开放越有价值。尤其是公共事业和互联网企业的数据开放数据将越来越多。目前,美欧等发达国家和地区的政府都在政府和公共事业上的数据做出了表率。中国政府也将一方面带头力促数据公开共享,另一方面,还通过推动建设各类大数据服务交易平台,为数据使用者提供丰富的数据来源和数据的应用。
5.大数据安全将日受重视
大数据在经济社会中应用日益广泛的同时,大数据的安全也必将受到更多的重视。大数据时代,在我们用数据挖掘和数据分析等大数据技术获取有价值信息的同时,“黑客”也可以利用这些大数据技术最大限度地收集更多有用信息,对其感兴趣的目标发起更加“精准的”攻击。近年来,个人隐私、企业商业信息甚至是国家机密泄露事件时有发生。对此,美欧等发达国家纷纷制定完善了保护信息安全、防止隐私泄露等相关法律法规。可以预见,在不久的将来,其他国家也会迅速跟进,以更好地保障本国政府、企业乃至居民的数据安全。
6.大数据人才将备受欢迎
随着大数据的不断发展及其应用的日益广泛,包括大数据分析师、数据管理专家、大数据算法工程师、数据产品经理等在内的具有丰富经验的数据分析人员将成为全社会稀缺的资源和各机构争夺的人才。据著名国际咨询公司Gartner预测,2015年全球大数据人才需求将达到440万人,而人才市场仅能够满足需求的三分之一。麦肯锡公司则预测美国到2018年需要深度数据分析人才44万—49万,缺口为14万—19万人。有鉴于此,美国通过国家科学基金会,鼓励研究性大学设立跨学科的学位项目,为培养下一代数据科学家和工程师做准备,并设立培训基金支持对大学生进行相关技术培训,召集各个学科的研究人员共同探讨大数据如何改变教育和学习等。英国、澳大利亚、法国等国家也类似地对大数据人才的培养做出专项部署。IBM 等企业也开始全面推进与高校在大数据领域的合作,力图培养企业发展需要的既懂业务知识又具分析技能的复合型数据人才。(武锋:国家信息中心)
问题一:大数据是什么意思 大数据是指整个分析运营的各个方面的数据整合。特别是指互联网带来的整个方方面的物流 信息流 资金流都在数据分析下整合
希望你能接受这个答案。
问题二:大数据是什么意思? 大数据(big data),是指无法在可承受的时间范围内用常规软件工具进行捕捉、管理和处理的数据 。大数据是需要新处理模式才能具有更强的决策力、洞察发现力和流程优化能力的海量、高增长率和多样化的信息资产。大数据技术的战略意义不在于掌握庞大的数据信息,而在于对这些含有意义的数据进行专业化处理。如果把大数据比作一种产业,那么这种产业实现盈利的关键,在于提高对数据的加工能力,通过加工实现数据的增值。
问题三:现在说的大数据是什么意思 最早提出“大数据”时代到来的是全球知名咨询公司麦肯锡,麦肯锡称:“数据,已经渗透到当今每一个行业和业务职能领域,成为重要的生产因素。人们对于海量数据的挖掘和运用,预示着新一波生产率增长和消费者盈余浪潮的到来。” “大数据”在物理学、生物学、环境生态学等领域以及军事、金融、通讯等行业存在已有时日,却因为近年来互联网和信息行业的发展而引起人们关注。大数据作为云计算、物联网之后IT行业又一大颠覆性的技术革命。云计算主要为数据资产提供了保管、访问的场所和渠道,而数据才是真正有价值的资产。企业内部的经营交易信息、互联网世界中的商品物流信息,互联网世界中的人与人交互信息、位置信息等,其数量将远远超越现有企业IT架构和基础设施的承载能力,实时性要求也将大大超越现有的计算能力。如何盘活这些数据资产,使其为国家治理、企业决策乃至个人生活服务,是大数据的核心议题,也是云计算内在的灵魂和必然的升级方向。
中文名:大数据时代
外文名:Big data
问题四:什么是大数据,大数据的意义是什么? 大数据的意思就是数据要在线,这样你的数据才能有价值,用于分析或者处理。大量的数据在线后的分析才有意义。可能得到你想要的数据,**里好多这种素材,比如人脸的搜索,人员的定位,人流的分析,运行的状态等等都有使用。现在做这些应用的也很多,只是落地的还稍微少一点。还是为了创造价值。
问题五:移动大数据是什么意思 从海量的数据里进行撷取、管理、处理、并整理之后,获得你需要的资讯
**《纸牌屋》的成功就是其中一个例子,Netflix(引进纸牌屋的公司)作为世界上最大的在线影片租恁服务商,从其网站点击率、下载量、搜索请求和评论等众多海量数据中进行分析与预测后,认为纸牌屋能火,因此选择引进《纸牌屋》
问题六:什么是大数据 大数据是什么意思 “大数据”不是“数据分析”的另一种说法!大数据具有规模性、高速性、多样性、而且无处不在等全新特点,具体地说,是指需要通过快速获取、处理、分析和提取有价值的、海量、多样化的交易数据、交互数据为基础,针对企业的运作模式提出有针对性的方案。由于物联网和智能可穿戴的普及带来的,生产线上普通的蓝领员工,前台电话员,等企业内的低阶员工也成为产生大数据的数据内容的一部分,数据的产生除了来自社交网络,网站,电子商务网站,邮箱外,智能手机,各种传感器,和物联网,智能可穿戴设备。
大数据营销与传统营销最显著的区别是大数据可以深入到营销的各个环节,使营销无处不在。如用户的偏好?上网的时间段?上网主要浏览页?对页面和产品的点击次数?网站上的用户评价对他的影响?他会在哪些地方分享对产品和购物过程的体验?这些都是对用户网上消费和品牌关注度的深入分析,可以直接影响用户消费的倾向等商业效果。
大数据彻底改变企业内部运作模式,以往的管理是“领导怎么说?”现在变成“大数据的分析结果”,这是对传统领导力的挑战,也推动企业管理岗位人才的定义。不仅懂企业的业务流程,还要成为数据专家,跨专业的要求改变过去领导力主要体现在经验和过往业绩上,如今熟练掌握大数据分析工具,善于运用大数据分析结果结合企业的销售和运营管理实践是新的要求。
当然大数据对企业的作用一个不可回避的关键因素是数据的质量,有句话叫“垃圾进,垃圾出”指的是如果采集的是大量垃圾数据会导致出来的分析结果也是毫无意义的垃圾。此外,企业内部是否会形成一个个孤立的数据孤岛,数据是否会成就企业内某些人或团队新的权力,导致数据不能得到实时有效地分享,这些都会是阻碍大数据在企业中有效应用的因素。
而随着大数据时代的到来,对大数据商业价值的挖掘和利用逐渐成为行业人士争相追捧的利润焦点。业内人士称,电商企业通过大数据应用,可以探索个人化、个性 化、精确化和智能化地进行广告推送和推广服务,创立比现有广告和产品推广形式性价比更高的全新商业模式。同时,电商企业也可以通过对大数据的把握,寻找更 多更好地增加用户粘性,开发新产品和新服务,降低运营成本的方法和途径。
问题七:什么是大数据时代 世界包含的多得难以想象的数字化信息变得更多更快……从商业到科学,从 到艺术,这种影响无处不在。科学家和计算机工程师们给这种现象创造了一个新名词:“大数据”。大数据时代什么意思大数据概念什么意思大数据分析什么意思所谓大数据,那到底什么是大数据,他的来源在哪里,定义究竟是什么呢
一:大数据的定义。
1、大数据,又称巨量资料,指的是所涉及的数据资料量规模巨大到无法通过人脑甚至主流软件工具,在合理时间内达到撷取、管理、处理、并整理成为帮助企业经营决策更积极目的的资讯。
2、大数据技术,是指从各种各样类型的大数据中,快速获得有价值信息的技术的能力,包括数据采集、存储、管理、分析挖掘、可视化等技术及其集成。适用于大数据的技术,包括大规模并行处理(MPP)数据库,数据挖掘电网,分布式文件系统,分布式数据库,云计算平台,互联网,和可扩展的存储系统。
互联网是个神奇的大网,大数据开发也是一种模式,你如果真想了解大数据,可以来这里,这个手机的开始数字是一八七中间的是三儿零最后的是一四二五零,按照顺序组合起来就可以找到,我想说的是,除非你想做或者了解这方面的内容,如果只是凑热闹的话,就不要来了。
3、大数据应用,是 指对特定的大数据 ,集成应用大数据技术,获得有价值信息的行为。对于不同领域、不同企业的不同业务,甚至同一领域不同企业的相同业务来说,由于其业务需求、数据 和分析挖掘目标存在差异,所运用的大数据技术和大数据信息系统也可能有着相当大的不同。惟有坚持“对象、技术、应用”三位一体同步发展,才能充分实现大数据的价值。
当你的技术达到极限时,也就是数据的极限”。大数据不是关于如何定义,最重要的是如何使用。最大的挑战在于哪些技术能更好的使用数据以及大数据的应用情况如何。这与传统的数据库相比,开源的大数据分析工具的如Hadoop的崛起,这些非结构化的数据服务的价值在哪里。
二:大数据的类型和价值挖掘方法
1、大数据的类型大致可分为三类:
1)传统企业数据(Traditionalenterprisedata):包括 CRM systems的消费者数据,传统的ERP数据,库存数据以及账目数据等。
2)机器和传感器数据(Machine-generated/sensor data):包括呼叫记录(CallDetail Records),智能仪表,工业设备传感器,设备日志(通常是Digital exhaust),交易数据等。
3)社交数据(Socialdata):包括用户行为记录,反馈数据等。如Twitter,Facebook这样的社交媒体平台。
2、大数据挖掘商业价值的方法主要分为四种:
1)客户群体细分,然后为每个群体量定制特别的服务。
2)模拟现实环境,发掘新的需求同时提高投资的回报率。
3)加强部门联系,提高整条管理链条和产业链条的效率。
4)降低服务成本,发现隐藏线索进行产品和服务的创新。
三:大数据的特点
业界通常用4个V(即Volume、Variety、Value、Velocity)来概括大数据的特征。具体来说,大数据具有4个基本特征:
1、是数据体量巨大
数据体量(volumes)大,指代大型数据集,一般在10TB规模左右,但在实际应用中,很多企业用户把多个数据集放在一起,已经形成了PB级的数据量;百度资料表明,其新>>
问题八:大数据,是指什么_怎么解释 大数据(big data,mega data),或称巨量资料,指的是需要新处理模式才能具有更强的决策力、洞察力和流程优化能力的海量、高增长率和多样化的信息资产。
问题九:征信大数据是什么意思? 大数据是指所涉及的资料量规模巨大到无法通过目前主流软件工具,在合理时间内达到撷取、处理、并整理成为服务于 经营决策的资讯。大数据征信是指什么呢?简单的说,例如电商行业京东做出判断的消费数据信息就是大数据征信。大数据征 信是伴随互联网金融发展起来的。目前征信机构有很多,不乏后起之秀如立木征信,使用互联网技术抓取或接口合作获取征信 数据,并且可以接入央行征信。随着互联网金融的发展,大数据征信与央行征信会不断融合直至融为一体,真正的满足数据的 完整性,可以更加全面地评估信用,为企业或个人提供决策分析、风险评估以及生活场景的应用。
大数据是指在一定时间内,常规软件工具无法捕捉、管理和处理的数据集合。它是一种海量、高增长、多元化的信息资产,需要一种新的处理模式,以具备更强的决策、洞察和流程优化能力。
大数据技术的战略意义不在于掌握庞大的数据信息,而在于对这些有意义的数据进行专业的处理。换句话说,如果把大数据比作一个行业,这个行业盈利的关键在于提高数据的“处理能力”,通过“处理”实现数据的“增值”。
从技术上讲,大数据和云计算的关系就像硬币的正反面一样密不可分。大数据不能用单台计算机处理,必须采用分布式架构。其特点在于海量数据的分布式数据挖掘。但它必须依赖云计算分布式处理、分布式数据库、云存储和虚拟化技术。
扩展信息:
大数据只是现阶段互联网的一个表征或特征。没有必要将其神话或保持敬畏。在以云计算为代表的技术创新背景下,这些原本看似难以收集和使用的数据开始被轻松使用。通过各行各业的不断创新,大数据将逐渐为人类创造更多的价值。
是体现大数据技术价值的手段,是进步的基石。这里从云计算、分布式处理技术、存储技术、感知技术的发展,阐述大数据从采集、处理、存储到形成结果的全过程。
实践是大数据的终极价值。在这里,我们从互联网大数据、政府大数据、企业大数据、个人大数据四个方面来描绘大数据的美好图景和将要实现的蓝图。
大数据(big data),指无法在一定时间范围内用常规软件工具进行捕捉、管理和处理的数据集合,是需要新处理模式才能具有更强的决策力、洞察发现力和流程优化能力的海量、高增长率和多样化的信息资产。
麦肯锡全球研究所给大数据出的定义是:一种规模大到在获取、存储、管理、分析方面大大超出了传统数据库软件工具能力范围的数据集合,具有海量的数据规模、快速的数据流转、多样的数据类型和价值密度低四大特征。
大数据技术的战略意义不在于掌握庞大的数据信息,而在于对这些含有意义的数据进行专业化处理。换而言之,如果把大数据比作一种产业,那么这种产业实现盈利的关键,在于提高对数据的“加工能力”,通过“加工”实现数据的“增值”。
从技术上看,大数据与云计算的关系就像一枚硬币的正反面一样密不可分。大数据必然无法用单台的计算机进行处理,必须采用分布式架构。它的特色在于对海量数据进行分布式数据挖掘。但它必须依托云计算的分布式处理、分布式数据库和云存储、虚拟化技术。
随着云时代的来临,大数据(Big data)也吸引了越来越多的关注。分析师团队认为,大数据(Big data)通常用来形容一个公司创造的大量非结构化数据和半结构化数据,这些数据在下载到关系型数据库用于分析时会花费过多时间和金钱。大数据分析常和云计算联系到一起,因为实时的大型数据集分析需要像MapReduce一样的框架来向数十、数百或甚至数千的电脑分配工作。大数据需要特殊的技术,以有效地处理大量的容忍经过时间内的数据。适用于大数据的技术,包括大规模并行处理(MPP)数据库、数据挖掘、分布式文件系统、分布式数据库、云计算平台、互联网和可扩展的存储系统。
这一切都始于数字时代到来后我们所产生的数据量的指数激增。这主要是因为计算机、因特网和技术能够从我们生活的真实世界中获取信息,并将其转化为数字数据。在2017年,当我们上网时、当我们携带配备GPS的智能手机时、当我们通过社交媒体或聊天应用程序与我们的朋友沟通时、以及我们在购物时,我们会生成数据。你可以说,我们所做的涉及数字交易的一切都会留下数字足迹,这几乎是我们生活的一切。
大数据是指在一定时间内,常规软件工具无法捕捉、管理和处理的数据集合。它是一种海量、高增长、多元化的信息资产,需要一种新的处理模式,以具备更强的决策、洞察和流程优化能力。
大数据技术的战略意义不在于掌握庞大的数据信息,而在于对这些有意义的数据进行专业的处理。换句话说,如果把大数据比作一个行业,这个行业盈利的关键在于提高数据的“处理能力”,通过“处理”实现数据的“增值”。
从技术上讲,大数据和云计算的关系就像硬币的正反面一样密不可分。大数据不能用单台计算机处理,必须采用分布式架构。其特点在于海量数据的分布式数据挖掘。但它必须依赖云计算分布式处理、分布式数据库、云存储和虚拟化技术。
扩展信息:
大数据只是现阶段互联网的一个表征或特征。没有必要将其神话或保持敬畏。在以云计算为代表的技术创新背景下,这些原本看似难以收集和使用的数据开始被轻松使用。通过各行各业的不断创新,大数据将逐渐为人类创造更多的价值。
是体现大数据技术价值的手段,是进步的基石。这里从云计算、分布式处理技术、存储技术、感知技术的发展,阐述大数据从采集、处理、存储到形成结果的全过程。
实践是大数据的终极价值。在这里,我们从互联网大数据、政府大数据、企业大数据、个人大数据四个方面来描绘大数据的美好图景和将要实现的蓝图。
大数据是指在一定时间内,常规软件工具无法捕捉、管理和处理的数据集合。它是一种海量、高增长、多元化的信息资产,需要一种新的处理模式,以具备更强的决策、洞察和流程优化能力。
大数据技术的战略意义不在于掌握庞大的数据信息,而在于对这些有意义的数据进行专业的处理。换句话说,如果把大数据比作一个行业,这个行业盈利的关键在于提高数据的“处理能力”,通过“处理”实现数据的“增值”。
从技术上讲,大数据和云计算的关系就像硬币的正反面一样密不可分。大数据不能用单台计算机处理,必须采用分布式架构。其特点在于海量数据的分布式数据挖掘。但它必须依赖云计算分布式处理、分布式数据库、云存储和虚拟化技术。
扩展信息:
大数据只是现阶段互联网的一个表征或特征。没有必要将其神话或保持敬畏。在以云计算为代表的技术创新背景下,这些原本看似难以收集和使用的数据开始被轻松使用。通过各行各业的不断创新,大数据将逐渐为人类创造更多的价值。
是体现大数据技术价值的手段,是进步的基石。这里从云计算、分布式处理技术、存储技术、感知技术的发展,阐述大数据从采集、处理、存储到形成结果的全过程。
实践是大数据的终极价值。在这里,我们从互联网大数据、政府大数据、企业大数据、个人大数据四个方面来描绘大数据的美好图景和将要实现的蓝图。
以上就是关于大数据是什么意思全部的内容,包括:大数据是什么意思、什么是大数据、大数据是什么意思等相关内容解答,如果想了解更多相关内容,可以关注我们,你们的支持是我们更新的动力!