数学家阿贝尔简介


近代人物

中文名:尼尔斯·亨利克·阿贝尔

外文名:Niels Henrik Abel

国籍:挪威

出生日期:1802年8月5日

逝世日期:1829年4月6日

职业:数学家

毕业院校:克里斯蒂安尼亚大学(奥斯陆大学)

阿贝尔清贫少年

阿贝尔(Niels Henrik Abel,1802年8月5日─1829年 4月 6日)是十九世纪挪威出现的最伟大数学家。他的父亲是挪威克里斯蒂安桑(Kristiansand)主教区芬杜(Findö)小村庄的牧师,全家生活在穷困之中。在1815年,当他进入了奥斯陆的一所天主教学校读书,他的数学才华便显露出来。经他的老师霍尔姆伯(Holmboë)的引导下,他学习了不少当时的名数学家的著作,包括:牛顿(Newton)、欧拉(Euler)、拉格朗日(Lagrange)及高斯(Gauss)等。他不单了解他们的理论,而且可以找出他们一些微小的漏洞。

1820年,阿贝尔的父亲去世,照顾全家七口的重担突然交到他的肩上。虽然如此,1821年阿贝尔透过霍姆彪的补助,仍可进入奥斯陆的克里斯蒂安尼亚大学(University of Christinania),即奥斯陆大学(Universitetet i Oslo)就读,於1822年获大学预颁学位,并由霍姆彪的资助下继续学业。在学校里,他几乎全是自学,同时花大量时间作研究。

阿贝尔隐没天才

(历史lishixinzhicom)

1823年当阿贝尔的第一篇论文发表后,他的朋友便力请挪威 资助他到德国及法国进修。当等待 回复时,在1824年他发表了他的《一元五次方程没有代数一般解》的论文,可望为他带来肯定地位。他把论文寄了给当时有名的数学家高斯,可惜高斯错过了这篇论,也不知道这个著名的代数难题已被解破。

1825-26年的冬季,他远赴柏林,并认识了克列尔(Crelle)。克列尔是个土木工程师,而且对数学很有热诚,他跟阿贝尔成为很要好的朋友。1826年,在阿贝尔的鼓励下,克列尔创立了一份纯数学和应用数学杂志(Journal für die reine und angewandte Mathematik),该杂志的第一期便刊登了阿贝尔在五次方程的工作成果,另外还有方程理论、泛函方程及理论力学等的论文。在柏林,新的数学向导使他继续独立地进行研究工作,後来阿贝尔更到了欧洲不同的地方。

1826年夏天,他在巴黎造访了当时最顶尖的数学家,并且完成了一份有关超越函数的研究报告。这些工作展示出一个代数函数理论,现称为阿贝尔定理,而这定理也是後期阿贝尔积分及阿贝尔函数的理论基础。他在巴黎被冷落对待,他曾经把他的研究报告寄去科学学院,望可得到好评,但他的努力也是徒然。他在离开巴黎前染顽疾,最初只以为只是感冒,后来才知道是肺结核病。

他辗转回到挪威,但欠下不少钱债。他只好靠教书及收取大学的微薄津贴为生。在1828年,他找到一份代课教师之职来维持生计。但他的穷困及病况并没有减低他对数学的热诚,他在这段期间写了大量的论文,主要是方程理论及椭圆函数,也就是有关阿贝尔方程和阿贝尔群的理论。他比雅可比(Jacobi)更快完全了椭圆函数的理论。此时,阿贝尔的名声经已响遍所有的数学中心,各方面的人也希望为他找到一个适当的教授席位,当中克列尔便希望为他在柏林找得一个教授席位。

在1828年冬天,阿贝尔的病逐渐严重起来。在他圣诞节去芬罗兰(Froland)探他的未婚妻克莱利·肯姆普(Crelly Kemp)期间,病情便更恶化。到1829年1月时,他已知自己寿命不长,出血的症状已无法否认。直至1829年4月6日凌晨,阿贝尔去世了,他的未婚妻坚持不要他人之助照顾阿贝尔,“单独占有这最後的时刻”。

阿贝尔去世后,他的老师霍尔姆伯于1839年为他出版了文集。

阿贝尔迟到荣誉

直到阿贝尔去世前不久,人们才认识到他的价值。1828年,四名法国科学院院士上书给挪威国王,请他为阿贝尔提供合适的科学研究位置,勒让德也在科学院会议上对阿贝尔大加称赞。在阿贝尔死後两天,克列尔写信说为阿贝尔成功争取於柏林大学(Freie Universität Berlin)当数学教授,可惜经已太迟,一代天才数学家已经在收到这消息前去世了。此后荣誉和褒奖接踵而来,1830年他和卡尔·雅可比共同获得法国科学院大奖。

阿贝尔在数学方面的成就是多方面的。除了五次方程之外,他还研究了更广的一类代数方程,后人发现这是具有交换的伽罗瓦群的方程。为了纪念他,后人称交换群为阿贝尔群。阿贝尔还研究过无穷级数,得到了一些判别准则以及关于幂级数求和的定理。这些工作使他成为分析学严格化的推动者。

阿贝尔和雅可比是公认的椭圆函数论的奠基者。阿贝尔发现了椭圆函数的加法定理、双周期性、并引进了椭圆积分的反演。他研究了形如的积分(现称阿贝尔积分), 其中R(x,y)是x和y的有理函数,且存在二元多项式ƒ,使ƒ(x,y)=0。他还证明了关于上述积分之和的定理,现称阿贝尔定理,它断言:若干个这种积分之和可以用g个这种积分之和加上一些代数的与对数的项表示出来,其中g只依赖于ƒ,就是ƒ的亏格。阿贝尔这一系列工作为椭圆函数论的研究开拓了道路,并深刻地影响着其他数学分支。埃尔米特曾说:阿贝尔留下的思想可供数学家们工作150年。

科学院秘书傅立叶读了论文的引言,然后委托勒让得和柯西负责审查。柯西把稿件带回家中,究竟放在什么地方,竟记不起来了。直到两年以后阿贝尔已经去世,失踪的论文原稿才重新找到,而论文的正式发表,则迁延了12年之久。

罗尔是法国数学家。1652年4月生于昂贝尔特,1719年11月8日卒于巴黎。

罗尔出身于小店主家庭,只受到初等教育,且结婚过早,年青时贫困潦倒,靠充当公证人和律师抄录员的微薄收入养家糊口。他利用业余时间刻苦自学代学和丢蕃图的著作,并很有心得。1682年他解决了数学家奥扎南提出的一个数论难题,受得学术界的好评,从而声名雀起,也使他的生活有了转机,此后担任初等数学教师和陆军部行政官员。1685年进入法国科学院,担任低级职务,直到1699年才获得科学院发给的薪水。此后他一直在科学院供职,1719年因中风去世。

罗尔在数学上的成就主要是在代数学方面,专长于丢蕃图方程的研究。罗尔所处的时代正当牛顿、莱布尼兹微积分诞生不久,由于这一新生事物还存在逻辑上缺陷,从而受到许多方面的非议,其中也包括罗尔,并且他是反对派中最直言不讳的一员。1700年在法国科学院发生了一场无穷小方法是否真实的论战。在这场论战中,罗尔认为无穷小方法由于缺少理论基础将导至谬误,并说“微积分是巧妙的缪论的汇集”。瓦里格农则为无穷小分析的打方新法辩护。从而罗尔和瓦里格农、索弗尔等人之间展开了激烈的争论。约翰贝努利还讽刺罗尔不懂微积分。由于对此问题表现得异常激动,致使科学院不得不屡次出面干预。直到1706年秋天,罗尔才向瓦里格农、方单等人承认他已经放弃了自己的观点,并充分认识到无穷小分析新方法的价值。

罗尔于1691年在题为《任意次方程的一个解法的证明》的论文中指出了:在多式项方程f(x)=0的两个相邻实根之间,方程至少有一个实根。一百多年后,即1846年龙斯托伯拉维提斯将这一定理推广到可微函数,并把此定理命名为罗尔定理。

拉格朗日(J-LLagrange,1736-1813,意大利)。1736年1月25日生于意大利西北部的都灵,1813年4月10日卒于巴黎。19岁就在都灵的皇家炮兵学校当数学教授。在探讨“等周问题”的过程中,他用纯分析的方法发展了欧拉所开创的变分法,为变分法奠定了理论基础。他的论著使他成为当时欧洲公认的第一流数学家。

拉格朗日科学研究所涉及的领域极其广泛。他在数学上最突出的贡献是使数学分析与几何与力学脱离开来,使数学的独立性更为清楚,从此数学不再仅仅是其他学科的工具。

拉格朗日总结了18世纪的数学成果,同时又为19世纪的数学研究开辟了道路,堪称法国最杰出的数学大师。同时,他的关于月球运动(三体问题)、行星运动、轨道计算、两个不动中心问题、流体力学等方面的成果,在使天文学力学化、力学分析化上,也起到了历史性的作用,促进了力学和天体力学的进一步发展,成为这些领域的开创性或奠基性研究。 在柏林工作的前十年,拉格朗日把大量时间花在代数方程和超越方程的解法上,作出了有价值的贡献,推动了代数学的发展。他提交给柏林科学院两篇著名的论文:《关于解数值方程》和《关于方程的代数解法的研究》 。把前人解三、四次代数方程的各种解法,总结为一套标准方法,即把方程化为低一次的方程(称辅助方程或预解式)以求解。

拉格朗日也是分析力学的创立者。拉格朗日在其名著《分析力学》中,在总结历史上各种力学基本原理的基础上,发展达朗贝尔、欧拉等人研究成果,引入了势和等势面的概念,进一步把数学分析应用于质点和刚体力学,提出了运用于静力学和动力学的普遍方程,引进广义坐标的概念,建立了拉格朗日方程,把力学体系的运动方程从以力为基本概念的牛顿形式,改变为以能量为基本概念的分析力学形式,奠定了分析力学的基础,为把力学理论推广应用到物理学其他领域开辟了道路。

他还给出刚体在重力作用下,绕旋转对称轴上的定点转动(拉格朗日陀螺)的欧拉动力学方程的解,对三体问题的求解方法有重要贡献,解决了限制性三体运动的定型问题。拉格朗日对流体运动的理论也有重要贡献,提出了描述流体运动的拉格朗日方法。

拉格朗日的研究工作中,约有一半同天体力学有关。他用自己在分析力学中的原理和公式,建立起各类天体的运动方程。在天体运动方程的解法中,拉格朗日发现了三体问题运动方程的五个特解,即拉格朗日平动解。此外,他还研究了彗星和小行星的摄动问题,提出了彗星起源假说等。

近百余年来,数学领域的许多新成就都可以直接或间接地溯源于拉格朗日的工作。所以他在数学史上被认为是对分析数学的发展产生全面影响的数学家之一。

柯西,法国数学家。1789年8月21日生于巴黎,1857年5月23日卒于巴黎附近的索镇。他出身于高级官员家庭,从小受过良好的教育。1805年进入巴黎综合工科学校;1807年就读于道路桥梁工程学校;1809年成为工程师,随后在运河、桥梁、海港等工程部门工作;1813年回到巴黎,任教于巴黎综合工科学校;1816年取得教授职位,同年被任命为法国科学院院士。此外,他还占有巴黎大学理学院和法兰西学院的教授席位。

1830年,波旁王朝被推翻,柯西拒绝宣誓效忠新的国王,因此失去所有的职位。后被前国王召到布拉格,协助宫廷教育,1838年回到巴黎,继任巴黎综合工科学校教授,并恢复了在科学院的活动。1848年任巴黎大学教授。

柯西主要的贡献在微积分、复变函数和微分方程三个领域。

牛顿,是英国伟大的数学家、物理学家、天文学家和自然哲学家。1642年12月25日生于英格兰林肯郡格兰瑟姆附近的沃尔索普村,1727年3月20日在伦敦病逝。

牛顿1661年入英国剑桥大学三一学院,1665年获文学士学位。随后两年在家乡躲避瘟疫。这两年里,他制定了一生大多数重要科学创造的蓝图。1667年回剑桥后当选为三一学院院委,次年获硕士学位。1669年任卢卡斯教授直到1701年。1696年任皇家造币厂监督,并移居伦敦。1703年任英国皇家学会会长。1706年受女王安娜封爵。他晚年潜心于自然哲学与神学。

牛顿在科学上最卓越的贡献是微积分和经典力学的创建。

莱布尼兹(Gottfried Wilhelm,Leibniz 1646~1716)德国科学家和哲学家。1646年6月21日生于莱比锡。父为莱比锡大学哲学教授,他的丰富藏书有助于小莱布尼兹博学多才。15岁入莱比锡大学学习哲学与法律律, 18岁以逻辑学论文获哲学学土学位,20岁时以方法论的论文《论组合的艺术》获阿尔道夫大学哲学博士学位。同年获该大学教授席位。30岁起在汉诺威主持德卡图书馆数十年。1716年11月14日逝世。

他用相当多的时间从事外交活动和科学活动,曾建议普鲁士、俄、奥、波兰等国设立科学院(据说还包括致信中国的康熙皇帝)。他有一种不屈于传统观念的探索精神,有“什么都不相信的人”之称。他一贯关心科学的应用和应用数学的发展。他善于结识知名的科学家与数学家,例如惠更斯等人。他继帕斯卡1649年发明机械式计算机以后对机件进行改革,并把法国教士从中国传入的阴阳八卦观念创新为二进制并应用于计算机中,在1671年发明了一台新的机械式计算机,1673年在英国皇家学会演示后被选为皇家学会会员。他独立地发现了微积分学,并于1684~16 86年正式发表。这些成果使他“业余”地成为欧学家和物理学家。

在物理学方面,他从当时研究的热门问题——关于运动的量度中,看出了他人之不足,他认为运动应当用活力()来量度,提出“活力”(指动能)守恒定律(1686),这是能量守恒定律的第一个表述。

他反对牛顿的超距作用和绝对时空观。

由于在微积分发用的优先权问题上,莱布尼兹与牛顿有过争议,后来又受民族主义影响,英国和欧州大陆之间优先权之争持续到他死后很长时期。

主要著作有:《新物理学假说》、《力学范本》等

姓名:陈景润 (1933—1996)

国家或地区:中国

身份:数学家

发明创造:哥德巴赫猜想第一人

简介:

陈景润(1933~1996)数学家, 中国科学院院士,身高171米。 1933年5月22日生于福建福州。1953年毕业于厦门大学数学系。1957年进入中国科学院数学研究所并在华罗庚教授指导下从事数论方面的研究。历任中国科学院数学研究所研究员、学术委员会委员兼贵阳民族学院、河南大学、青岛大学、华中工学院、福建师范大学等校教授,国家科委数学学科组成员,《数学季刊》主编等职。主要从事解析数论方面的研究,并在哥德巴赫猜想研究方面取得国际领先的成果。这一成果国际上誉为“陈氏定理”,受到广泛引用。

主要成果:

1742年6月7日,德国数学家哥德巴赫提出一个未经证明的数学猜想“任何一个偶数均可表示两个素数之和”简称:“ 1+1”。这一猜想被称为“哥德巴赫猜想”。中国人运用新的方法,打开了“哥德巴赫猜想”的奥秘之门,摘取了此项桂冠,为世人所瞩目。这个人就是世界上攻克“哥德巴赫猜想”的第一个人——陈景润。

生平:

陈景润,1933年生,福建省闽侯人。家境贫寒,学习刻苦,高中没毕业就以同等学历考入厦门大学。他在中、小学读书时,就对数学情有独钟。一有时间就演算习题,在学校里成了个“小数学迷”。他不善言辞,为人真诚和善,从不计较个人得失,把毕生经历都献给了数学事业。陈景润在福州英华中学读书时,有幸聆听了清华大学调来一名很有学问的数学教师讲课。他给同学们讲了世界上一道数学难题:“大约在200年前,一位名叫哥德巴赫的德国数学家提出了‘任何一个偶数均可表示两个素数之和’,简称1+l。他一生没有证明出来,便给俄国圣彼得堡的数学家欧拉写信,请他帮助证明这道难题。欧拉接到信后,就着手计算。他费尽了脑筋,直到离开人世,也没有证明出来。之后,哥德巴赫带着一生的遗憾也离开了人世,却留下了这道数学难题。200多年来,这个哥德巴赫猜想之谜吸引了众多的数学家,但始终没有结果,成为世界数学界一大悬案”。老师讲到这里还打个形象的比喻,自然科学皇后是数学,“哥德巴赫猜想”则是皇后王冠上的明珠!这引人入胜的故事给陈景润留下了深刻的印象,“哥德巴赫猜想”像磁石一般吸引着陈景润。从此,陈景润开始了摘取皇冠上宝石的艰辛历程。

1953年,陈景润毕业于厦门大学数学系,曾被留校,当了一名图书馆的资料员,除整理图书资料外,还担负着为数学系学生批改作业的工作,尽管时间紧张、工作繁忙,他仍然坚持不懈地钻研数学科学。陈景润对数学论有浓厚的兴趣,利用一切可以利用的时间系统地阅读了我国著名数学家华罗庚有关数学的专著。陈景润为了能直接阅读外国资料,掌握最新信息,在继续学习英语的同时,又攻读了俄语、德语、法语、日语、意大利语和西班牙语。学习这些个国家语言对一个数学家来说已是一个惊人突破了,但对陈景润来说只是万里长征迈出的第一步。

为了使自己梦想成真,陈景润不管是酷暑还是严冬,在那不足6平米的斗室里,食不知味,夜不能眠,潜心钻研,光是计算的草纸就足足装了几麻袋。1957年,陈景润被调到中国科学院研究所工作,做为新的起点,他更加刻苦钻研。经过10多年的推算,在1965年5月,发表了他的论文《大偶数表示一个素数及一个不超过2个素数的乘积之和》。论文的发表,受到世界数学界和著名数学家的高度重视和称赞。英国数学家哈伯斯坦和德国数学家黎希特把陈景润的论文写进数学书中,称为“陈氏定理”,陈景润终于攻克了“哥德巴赫猜想”这一世界数学之谜,这一世界数学“悬案”终于被陈景润所破译,皇后王冠上的明珠终于被陈景润所摘取。可是这个世界数学领域的精英,在日常生活中却不知商品分类,有的商品名子都叫不出名来,被称为“痴人”和“怪人”。

徐迟的《哥德巴赫猜想》一文的发表,如旋风般震撼着人们的心灵,震撼着中外数学界。国内外评论说:“陈景润成了中国科学春天的一大盛景”。他被邀参加了全国科学大会,邓小平同志亲切地接见了他。当时陈景润身体不太好,小平同志关怀备至,会议结束后,陈景润被送入北京解放军309医院高干病房。他的到来,轰动了整个医院,院领导给予了盛情的接待,医生和护士无不崇敬这位世界上第一位数学圣人。

1977年11月从武汉军区派到309医院进修的由昆,被同伴们拉去看中国这位名人,这真是缘分,过去陈景润连女人名字的边都不粘,连句话都不说的人,此次年近半百的陈景润见到由昆,眼睛一亮,亲切地和由昆打招呼,请她们进来坐下,话也多了。后来由昆被派到陈景润的病房当值班医生。这样,接触的机会多了,每次由昆一出现,陈景润都特别高兴。一天,陈景润关切地问由昆,家住在哪?有没有成家、有没有男朋友?由昆毫不设防,她便心真口快地说:“没有,没有,还早着呢。”以后,由昆也十分关心这位中国数学家,斗转星移,彼此产生了爱情,他们在组织的帮助下结婚了。从此这位被称为“痴人”和“怪人”的数字家陈景润有了一个温暖的家了。

陈景润除攻克这一难题外,又把组合数学与现代经济管理、尖端技术和人类密切关系等方面进行了深入的研究和探讨。他先后在国内外报刊上发明了科学论文70余篇,并有《数学趣味谈》、《组合数学》等著作。

1984年4月27日,陈景润在横过马路时,被一辆急驶而来的自行车撞倒,后脑着地,酿成意外的重伤。雪上加霜,身体本来就不大好的陈景润,受到了几乎致命的创伤。他从医院里出来,苍白的脸上,有时泛着让人忧郁的青灰色,不久,终于诱发了帕金森氏综合症。

1996年3月19日,著名数学家陈景润因病长期住院,经抢救无效逝世,终年63岁。

陈景润在解析数论的研究领域取得多项重大成果,曾获国家自然科学奖一等奖、何梁何利基金奖、华罗庚数学奖等多项奖励。他是第四、五、六届全国人民代表大会代表。著有《数学趣味谈》、《组合数学》等。

陈景润的故事

陈景润叔叔是我国有名的数学家。他不爱玩公园,不爱逛马路,就爱学习。学习起来,常常忘记了吃饭睡觉。

有一天,陈景润叔叔吃中饭的时候,摸摸脑袋,哎呀,头发太长了,应该快去理一理,要不,人家看见了,还当他是个姑娘呢。于是,他放下饭碗,就跑到理发店去了。

理发店里人很多,大家挨着次序理发。陈景润叔叔拿的牌子是三十八号的小牌子。他想:轮到我还早着哩。时间是多么宝贵啊,我可不能白白浪费掉。他赶忙走出理发店,找了个安静的地方坐下来,然后从口袋里掏出个小本子,背起外文生字来。他背了一会,忽然想起上午读外文的时候,有个地方没看懂。不懂的东西,一定要把它弄懂,这是陈景润叔叔的脾气。他看了看手表,才十二点半。他想:先到图书馆去查一查,再回来理发还来得及,站起来就走了。谁知道,他走了不多久,就轮到他理发了。理发员叔叔大声地叫:“三十八号!谁是三十八号?快来理发!”你想想,陈景润叔叔正在图书馆里看书,他能听见理发员叔叔喊三十八号吗?

过了好些时间,陈景润叔叔在图书馆里,把不懂的东西弄懂了,这才高高兴兴地往理发店走去。可是他路过外文阅览室,有各式各样的新书,可好看啦。又跑进去看起书来了,一直看到太阳下山了,他才想起理发的事儿来。他一摸口袋,那张三十八号的小牌子还好好地躺着哩。但是他来到理发店还有啥用呢,这个号码早已过时了。

陈景润叔叔进了图书馆,真好比掉进了蜜糖罐,怎么也舍不得离开。可不,又有一天,陈景润叔叔吃了早饭,带上两个馒头,一块咸菜,到图书馆去了。

陈景润叔叔在图书馆里,找到了一个最安静的地方,认认真真地看起书来。他一直看到中午,觉得肚子有点饿了,就从口袋里掏出一只馒头来,一面啃着,一面还在看书。

“丁零零……”下班的铃声响了,管理员大声地喊:“下班了,请大家离开图书馆!”人家都走了,可是陈景润叔叔根本没听见,还是一个劲地在看书呐。

管理员以为大家都离开图书馆了,就把图书馆的大门锁上,回家去了。

时间悄悄地过去,天渐渐地黑下来。陈景润叔叔朝窗外一看,心里说:今天的天气真怪!一会儿阳光灿烂,一会儿天又阴啦。他拉了一下电灯的开关线,又坐下来看书。看着看着,忽然,他站了起来。原来,他看了一天书,开窍了。现在,他要赶回宿舍去,把昨天没做完的那道题目,继续做下去。

陈景润叔叔,把书收拾好,就往外走去。图书馆里静悄俏的,没有一点儿声音。哎,管理员上哪儿去了呢?来看书的人怎么一个也没了呢?陈景润叔叔看了一下手表,啊,已经是晚上八点多钟了。他推推大门,大门锁着;他朝门外大声喊叫:“请开门!请开门!”可是没有人回答。

要是在平时,陈景润叔叔就会走回座位,继续看书,一直看到第二天早上。可是,今天不行啊!他要赶回宿舍,做那道没有做完的题目呢!

他走到电话机旁边,给办公室打电话。可是没人来接,只有嘟嘟的声音。他又拨了几次号码,还是没有人来接。怎么办呢?这时候,他想起了党委书记,马上给党委书记拨了电话。

“陈景润?”党委书记接到电话,感到很奇怪。他问清楚是怎么一回事,高兴得不得了,笑着说:“陈景润!陈景润!你辛苦了,你真是个好同志。”

党委书记马上派了几个同志,去找图书馆的管理员。图书馆的大门打开了,陈景润叔叔向管理员说:“对不起!对不起!谢谢,谢谢!”他一边说一边跑下楼梯,回到了自己的宿舍。

他打开灯,马上做起那道题目来。

1996年3月19日陈景润逝世。

莱昂哈德·欧拉Leonhard Euler 1707年4月5日~1783年9月18日 是瑞士数学家和物理学家。他被称为历史上最伟大的两位数学家之一(另一位是卡尔·弗里德里克·高斯)。欧拉是第一个使用“函数”一词来描述包含各种参数的表达式的人,例如:y = F(x) (函数的定义由莱布尼兹在1694年给出)。他是把微积分应用于物理学的先驱者之一。"欧拉进行计算看起来毫不费劲儿,就像人进行呼吸,像鹰在风中盘旋一样°(阿拉戈语),这封伦纳德.欧拉(1707--1783)无与伦比的数学才能来说并不夸张,他是历史上最多产的数学家。与他同时代的人们称他为"分析的化身"。欧拉撰写长篇学术论文就像一个文思敏捷的作家给亲密的朋友写一封信那样容易。甚至在他生命最后17年间的完全失明也未能阻止他的无比多产,如果说视力的丧失有什么影响的话,那倒是提高了他在内心世界进行思维的想像力。�0�2

欧拉到底为了多少著作,直至1936年人们也没有确切的了解。但据估计,要出版已经搜集到的欧拉著作,将需用大4开本60至80卷。1909年瑞士自然科学联合会曾着手搜集、出版欧拉散轶的学术论文。这项工作是在全世界许多个人和数学团体的资助之下进行的。这也恰恰显示出,欧拉属于整个文明世界,而不仅仅屈于瑞士。为这项工作仔细编制的预算(1909年的钱币约合80000美元)却又由于在圣彼得堡(列宁格勒)意外地发现大量欧拉手稿而被完全打破了。

欧拉和丹尼尔·伯努利一起,建立了弹性体的力矩定律:作用在弹性细长杆上的力矩正比于物质的弹性和通过质心轴和垂直于两者的截面的惯性动量。�0�2

他还直接从牛顿运动定律出发,建立了流体力学里的欧拉方程。这些方程组在形式上等价于粘度为0的纳维-斯托克斯方程。人们对这些方程的主要兴趣在于它们能被用来研究冲击波。�0�2

他对微分方程理论作出了重要贡献。他还是欧拉近似法的创始人,这些计算法被用于计算力学中。此中最有名的被称为欧拉方法。�0�2

在数论里他引入了欧拉函数。�0�2

自然数的欧拉函数被定义为小于并且与互质的自然数的个数。例如,,因为有四个自然数1,3,5和7与8互质。�0�2

在计算机领域中广泛使用的RSA公钥密码算法也正是以欧拉函数为基础的。�0�2

在分析领域,是欧拉综合了莱布尼兹的微分与牛顿的流数。�0�2

他在1735年由于解决了长期悬而未决的贝塞尔问题而获得名声:�0�2

:其中是黎曼函数。�0�2

欧拉将虚数的幂定义为如下公式:这就是欧拉公式,它成为指数函数的中心。�0�2

在初等分析中,从本质上来说,要么是指数函数的变种,要么是多项式,两者必居其一。被理查德·费曼称为“最卓越的数学公'”的则是欧拉公式的一个简单推论(通常被称为欧拉恒等式):�0�2

:在1735年,他定义了微分方程中有用的欧拉-马歇罗尼常数:�0�2

:他是欧拉-马歇罗尼公式的发现者之一,这一公式在计算难于计算的积分、求和与级数的时候极为有效。�0�2

在1739年,欧拉写下了《音乐新理论的尝试(Tentamennovaetheoriaemusicae)》,书中试图把数学和音乐结合起来。�0�2

一位传记作家写道:这是一部"为精通数学的音乐家和精通音乐的数学家而写的"著作。�0�2

在经济学方面,欧拉证明,如果产品的每个要素正好用于支付它自身的边际产量,在规模报酬不变的情形下,总收入和产出将完全耗尽。�0�2

在几何学和代数拓扑学方面,欧拉公式给出了单联通多面体的边、顶点和-(zh-hans:面;zh-hant:面)-之间存在的关系::�0�2

其中,F为给定多面体的面数之和,E为边数之和,V为顶点数之和。�0�2

这个定理也可用于平面图。对非平面图,欧拉公式可以推广为:如果一个图可以被嵌入一个流形,则::其中χ为此流形的欧拉特征值,在流形的连续变形下是不变量。�0�2

单联通流形,例如球面或平面,的欧拉特征值是2。�0�2

对任意的平面图,欧拉公式可以推广为:,其中为图中连通分支数。�0�2

在1736年,欧拉解决了柯尼斯堡七桥问题,并且发表了论文《关于位置几何问题的解法(Solutioproblematisadgeometriamsituspertinentis)》,对一笔画问题进行了阐述,是最早运用图论和拓扑学的典范。�0�2

数独是欧拉发明的拉丁方块的概念,在当时并不流行,直到20世纪由平凡日本上班族锻治真起,带起流行

华罗庚(1910年11月12日—1985年6月12日), 原全国政协副主席。出生于江苏常州金坛区,祖籍江苏丹阳,数学家,中国科学院院士,美国国家科学院外籍院士,第三世界科学院院士,联邦德国巴伐利亚科学院院士,中国科学院数学研究所研究员、原所长。

华罗庚主要从事解析数论、矩阵几何学、典型群、自守函数论、多复变函数论、偏微分方程、高维数值积分等领域的研究;并解决了高斯完整三角和的估计难题、华林和塔里问题改进、一维射影几何基本定理证明、近代数论方法应用研究等;

被列为芝加哥科学技术博物馆中当今世界88位数学伟人之一;国际上以华氏命名的数学科研成果有“华氏定理”、“华氏不等式”、“华—王方法”等。

扩展资料:

华罗庚个人轶事——推广双法

华罗庚在继续从事数学理论研究的同时,努力尝试寻找一条数学和工农业实践相结合的道路。经过一段实践,他发现数学中的统筹法和优选法是在工农业生产中能够比较普遍应用的方法,可以提高工作效率,改变工作管理面貌。于是,他一面在科技大学讲课,一面带领学生到工农业实践中去推广优选法、统筹法。

1964年初,他给毛泽东写信,表达要走与工农相结合道路的决心。同年3月18日,毛泽东亲笔回函:“诗和信已经收读。壮志凌云,可喜可贺。”

他写成了《统筹方法平话及补充》、《优选法平话及其补充》,亲自带领中国科技大学师生到一些企业工厂推广和应用“双法”,为工农业生产服务。“夏去江汉斗酷暑,冬往松辽傲冰霜”。这就是他当时的生活写照。1965年,毛泽东再次写信给他,祝贺和勉励他“奋发有为,不为个人而为人民服务”。

以上就是关于数学家阿贝尔简介全部的内容,包括:数学家阿贝尔简介、帮忙找数学家简介、求数学家的资料、身世、成就等相关内容解答,如果想了解更多相关内容,可以关注我们,你们的支持是我们更新的动力!

转载请注明原文地址:https://juke.outofmemory.cn/read/3709156.html

最新回复(0)