方法1:将三角形的三个角撕下来拼在一起,可求出内角和为180°
方法2:在三角形任意一个顶点处做辅助线,可求出内角和为180°
例题:已知有一△ABC,求证∠ABC+∠BAC+∠BCA=180°
证明:做BC的延长线至点D,过点C作AB的平行线至点E
∵AB∥CE(已知)
∴∠ABC=∠ECD(两直线平行,同位角相等),∠BAC=∠ACE(两直线平行,内错角相等)
∵∠BCD=180°
∴∠ACB+∠ACE+∠ECD=∠BCD=180°(等式的性质)
∴∠ABC+∠BAC+∠BCA=180°(等量代换)
三角形内角和定理:三角形三个内角和等于180°。
用数学符号表示为:在△ABC中,∠1+∠2+∠3=180°
推论1直角三角形的两个锐角互余。
推论2三角形的一个外角等于和它不相邻的两个内角和。
推论3三角形的一个外角大于任何一个和它不相邻的内角。
三角形的内角和是外角和的一半。三角形内角和等于三内角之和。
非欧几何中的三角形内角和
以上所说的三角形是指平面三角形,处于平直空间中。当三角形处于黎曼几何空间中时,内角和不一定为180°。例如,在罗巴契夫斯基几何(罗氏几何)中,内角和小于180°;而在黎曼几何时,内角和大于180°。
以上就是关于三角形的内角和定理怎样证明全部的内容,包括:三角形的内角和定理怎样证明、求三角形内角和的公式是什么、等相关内容解答,如果想了解更多相关内容,可以关注我们,你们的支持是我们更新的动力!