三角形垂心有什么性质

影帝漫漫何其多2023-04-27  28

三角形三条高的交战,称为三角形的垂心由三角形的垂心造成的四个等(外接)圆三角形,给我们解题提供了极大的便利

三角形的三条高的交点叫做三角形的垂心。

锐角三角形垂心在三角形内部。

直角三角形垂心在三角形直角顶点。

钝角三角形垂心在三角形外部。

垂心是高线的交点

垂心是从三角形的各顶点向其对边所作的三条垂线的交点。

三角形三个顶点,三个垂足,垂心这7个点可以得到6个四点圆。

重心:三角形顶点与对边中点的连线交于一点,称为三角形重心;

垂心:三角形各边上的高交于一点,称为三角形垂心;

外心:三角形各边上的垂直平分线交于一点,称为三角形外心;

内心:三角形三内角平分线交于一点,称为三角形内心;

中心:正三角形的重心、垂心、外心、内心重合,称为正三角形的中心。

三角形垂心的性质设⊿ABC的三条高为AD、BE、CF,其中D、E、F为垂足,垂心为H,角A、B、C的对边分别为a、b、c,p=(a+b+c)/2.

1、锐角三角形的垂心在三角形内;直角三角形的垂心在直角顶点上;钝角三角形的垂心在三角形外

2、三角形的垂心是它垂足三角形的内心;或者说,三角形的内心是它旁心三角形的垂心; 3、 垂心H关于三边的对称点,均在△ABC的外接圆上

4、 △ABC中,有六组四点共圆,有三组(每组四个)相似的直角三角形,且AH·HD=BH·HE=CH·HF

5、 H、A、B、C四点中任一点是其余三点为顶点的三角形的垂心(并称这样的四点为一—垂心组)

6、 △ABC,△ABH,△BCH,△ACH的外接圆是等圆

7、 在非直角三角形中,过H的直线交AB、AC所在直线分别于P、Q,则 AB/AP·tanB+ AC/AQ·tanC=tanA+tanB+tanC

8、 三角形任一顶点到垂心的距离,等于外心到对边的距离的2倍

9、 设O,H分别为△ABC的外心和垂心,则∠BAO=∠HAC,∠ABH=∠OBC,∠BCO=∠HCA 

10、 锐角三角形的垂心到三顶点的距离之和等于其内切圆与外接圆半径之和的2倍

11、 锐角三角形的垂心是垂足三角形的内心;锐角三角形的内接三角形(顶点在原三角形的边上)中,以垂足三角形的周长最短

12、 西姆松(Simson)定理(西姆松线) 从一点向三角形的三边所引垂线的垂足共线的重要条件是该点落在三角形的外接圆上

一、三角形的外心,定义:三角形的外心是三角形三条垂直平分线的交点(或三角形外接圆的圆心)

性质:三角形三条边的垂直平分线的交于一点,该点即为三角形外接圆的圆心。

二、三角形的内心,定义:三角形的内心是三角形三条内角平分线的交点(或内切圆的圆心)。

性质:三角形的三条角平分线交于一点,该点即为三角形的内心。

三、三角形的垂心,定义:三角形的垂心是三角形三边上的高的交点(通常用H表示)。

性质:锐角三角形的垂心在三角形内;直角三角形的垂心在直角顶点上;钝角三角形的垂心在三角形外。

四、三角形的重心,定义:三角形的重心是三角形三条中线的交点。

性质:重心到顶点的距离与重心到对边中点的距离之比为2:1。

三角形是由同一平面内不在同一直线上的三条线段‘首尾’顺次连接所组成的封闭图形,在数学、建筑学有应用。常见的三角形按边分有普通三角形(三条边都不相等),等腰三角(腰与底不等的等腰三角形、腰与底相等的等腰三角形即等边三角形);按角分有直角三角形、锐角三角形、钝角三角形等,其中锐角三角形和钝角三角形统称斜三角形。

等腰三角形;等腰三角形(isosceles

triangle),指两边相等的三角形,相等的两个边称为这个三角形的腰。等腰三角形中,相等的两条边称为这个三角形的腰,另一边叫做底边。两腰的夹角叫做顶角,腰和底边的夹角叫做底角。等腰三角形的两个底角度数相等(简写成“等边对等角”)。

等腰三角形底边上的垂直平分线到两条腰的距离相等。等腰三角形的一腰上的高与底边的夹角等于顶角的一半。等腰三角形底边上任意一点到两腰距离之和等于一腰上的高(需用等面积法证明)。等腰三角形是轴对称图形。

以上就是关于三角形垂心有什么性质全部的内容,包括:三角形垂心有什么性质、怎样找三角形的重心,垂心,内心,外心、三角形的垂心有什么性质等相关内容解答,如果想了解更多相关内容,可以关注我们,你们的支持是我们更新的动力!

转载请注明原文地址:https://juke.outofmemory.cn/read/3700829.html

最新回复(0)