关于圆的公式是什么

天丝是什么面料2023-04-27  16

关于圆的公式:

周长:C=2πr (r半径)

面积:S=πr²

半圆周长:C=πr+2r

半圆面积:S=πr²/2

圆的标准方程:在平面直角坐标系中,以点O(a,b)为圆心,以r为半径的圆的标准方程是(x-a)^2+(y-b)^2=r^2。

圆的一般方程:把圆的标准方程展开,移项,合并同类项后,可得圆的一般方程是x^2+y^2+Dx+Ey+F=0。和标准方程对比,其实D=-2a,E=-2b,F=a^2+b^2。

圆的概念

1、到定点的距离等于定长的点的集合叫做圆。这个定点叫做圆的圆心,通常用字母“o”表示。

2、连接圆心和圆周上任意一点之间的连线叫做半径,通常用字母“r”表示。

3、通过圆心并且两个端点都在圆周上的线段叫做直径,通常用字母“d”表示。

4、连接圆上任意两点的线段叫做弦。在同圆或等圆中,最长的弦是直径。

5、圆上任意两点间的部分叫做圆弧,简称弧。大于半圆的弧称为优弧,优弧是用三个字母表示。小于半圆的弧称为劣弧,劣弧用两个字母表示。半圆既不是优弧,也不是劣弧。

圆的一般方程是x²+y²+Dx+Ey+F=0(D²+E²-4F>0),其中圆心坐标是(-D/2,-E/2),半径 根号(D²+E²-4F)/2。

扩展资料

圆(一种几何图形)在一个平面内,一动点以一定点为中心,以一定长度为距离旋转一周所形成的封闭曲线叫做圆。圆有无数个点。

在同一平面内,到定点的距离等于定长的点的集合叫做圆。圆可以表示为集合{M||MO|=r},圆的标准方程是(x - a) ² + (y - b) ² = r ²。其中,o是圆心,r 是半径。圆形是一种圆锥曲线,由平行于圆锥底面的平面截圆锥得到。

圆是一种几何图形。根据定义,通常用圆规来画圆。 同圆内圆的直径、半径长度永远相同,圆有无数条半径和无数条直径。圆是轴对称、中心对称图形。对称轴是直径所在的直线。 同时,圆又是“正无限多边形”,而“无限”只是一个概念。当多边形的边数越多时,其形状、周长、面积就都越接近于圆。所以,世界上没有真正的圆,圆实际上只是概念性的图形。

已知圆的周长C,求直径的公式d,公式为C=πd,π(31415926)为圆周率

则d=C/π。

通过圆心并且两端都在圆上的线段叫做直径,字母表示为d。

直径所在的直线是圆的对称轴。

1圆的定义

平面内,到定点的距离等于定长的点的集合叫做圆。这个定点叫做圆的圆心。

2圆的参数

圆的主要参数

上图标注了圆的一些参数。

圆有无数条对称轴,对称轴经过圆心。圆有无数条半径和无数条直径。

圆形是一种圆锥曲线,由平行于圆锥底面的平面截圆锥得到。

3表示方式

圆—⊙;半径—r或R;圆心—O;弧—⌒;直径—d;

扇形弧长—L;周长—C;面积—S。

4计算公式

圆的周长公式

圆的周长:C=πd=2πr。

半圆的周长 c=πr+2r

圆的面积计算公式

S=πr

弧长角度公式

扇形弧长L=圆心角(弧度制)×R= nπR/180(n为圆心角)(R为扇形半径)

扇形面积S=nπR/360=LR/2(L为扇形的弧长)

圆锥底面半径 r=nR/360(r为底面半径)(n为圆心角)。

5性质定理及方程

圆有许多相关性质和定理,如垂径定理、切线定理、切线长定理、弦切角定理等等。圆还有形式众多的方程,圆的性质定理及方程在圆锥曲线中是很常用的。

圆的标准方程

(x-a)2+(y-b)2=r2

注:(a,b)是圆心坐标

圆的一般方程

x2+y2+Dx+Ey+F=0

注:D2+E2-4F>0

101圆是定点的距离等于定长的点的集合

102圆的内部可以看作是圆心的距离小于半径的点的集合

103圆的外部可以看作是圆心的距离大于半径的点的集合

104同圆或等圆的半径相等

105到定点的距离等于定长的点的轨迹,是以定点为圆心,定长为半

径的圆

106和已知线段两个端点的距离相等的点的轨迹,是着条线段的垂直

平分线

107到已知角的两边距离相等的点的轨迹,是这个角的平分线

108到两条平行线距离相等的点的轨迹,是和这两条平行线平行且距

离相等的一条直线

109定理

不在同一直线上的三点确定一个圆。

110垂径定理

垂直于弦的直径平分这条弦并且平分弦所对的两条弧

111推论1

①平分弦(不是直径)的直径垂直于弦,并且平分弦所对的两条弧

②弦的垂直平分线经过圆心,并且平分弦所对的两条弧

③平分弦所对的一条弧的直径,垂直平分弦,并且平分弦所对的另一条弧

112推论2

圆的两条平行弦所夹的弧相等

113圆是以圆心为对称中心的中心对称图形

114定理

在同圆或等圆中,相等的圆心角所对的弧相等,所对的弦

相等,所对的弦的弦心距相等

115推论

在同圆或等圆中,如果两个圆心角、两条弧、两条弦或两

弦的弦心距中有一组量相等那么它们所对应的其余各组量都相等

116定理

一条弧所对的圆周角等于它所对的圆心角的一半

117推论1

同弧或等弧所对的圆周角相等;同圆或等圆中,相等的圆周角所对的弧也相等

118推论2

半圆(或直径)所对的圆周角是直角;90°的圆周角所

对的弦是直径

119推论3

如果三角形一边上的中线等于这边的一半,那么这个三角形是直角三角形

120定理

圆的内接四边形的对角互补,并且任何一个外角都等于它

的内对角

121①直线L和⊙O相交

d<r

②直线L和⊙O相切

d=r

③直线L和⊙O相离

d>r

122切线的判定定理

经过半径的外端并且垂直于这条半径的直线是圆的切线

123切线的性质定理

圆的切线垂直于经过切点的半径

124推论1

经过圆心且垂直于切线的直线必经过切点

125推论2

经过切点且垂直于切线的直线必经过圆心

126切线长定理

从圆外一点引圆的两条切线,它们的切线长相等,

圆心和这一点的连线平分两条切线的夹角

127圆的外切四边形的两组对边的和相等

128弦切角定理

弦切角等于它所夹的弧对的圆周角

129推论

如果两个弦切角所夹的弧相等,那么这两个弦切角也相等

130相交弦定理

圆内的两条相交弦,被交点分成的两条线段长的积

相等

131推论

如果弦与直径垂直相交,那么弦的一半是它分直径所成的

两条线段的比例中项

132切割线定理

从圆外一点引圆的切线和割线,切线长是这点到割

线与圆交点的两条线段长的比例中项

133推论

从圆外一点引圆的两条割线,这一点到每条割线与圆的交点的两条线段长的积相等

134如果两个圆相切,那么切点一定在连心线上

135①两圆外离

d>R+r

②两圆外切

d=R+r

③两圆相交

R-r<d<R+r(R>r)

④两圆内切

d=R-r(R>r)

⑤两圆内含d<R-r(R>r)

圆的面积公式为:S=πr²,S=π(d/2)²,(d为直径,r为半径,π是圆周率,通常取314),圆面积公式的是由古代数学家不断推导出来的。

我国古代的数学家祖冲之,从圆内接正六边形入手,让边数成倍增加,用圆内接正多边形的面积去逼近圆面积。

古希腊的数学家,从圆内接正多边形和外切正多边形同时入手,不断增加它们的边数,从里外两个方面去逼近圆面积。

古印度的数学家,采用类似切西瓜的办法,把圆切成许多小瓣,再把这些小瓣对接成一个长方形,用长方形的面积去代替圆面积。

16世纪的德国天文学家开普勒,把圆分割成许多小扇形;不同的是,他一开始就把圆分成无穷多个小扇形。圆面积等于无穷多个小扇形面积的和,所以在最后一个式子中,各段小弧相加就是圆的周长2πR,所以有S=πr²。

与圆相关的公式:

1、半圆的面积:S半圆=(πr^2)/2。(r为半径)。

2、圆环面积:S大圆-S小圆=π(R^2-r^2)(R为大圆半径,r为小圆半径)。

3、圆的周长:C=2πr或c=πd。(d为直径,r为半径)。

4、半圆的周长:d+(πd)/2或者d+πr。(d为直径,r为半径)。

5、扇形弧长L=圆心角(弧度制)×R= nπR/180(θ为圆心角)(R为扇形半径)

6、扇形面积S=nπ R²/360=LR/2(L为扇形的弧长)

7、圆锥底面半径 r=nR/360(r为底面半径)(n为圆心角)

于无穷多个小扇形面积的和,所以在最后一个式子中,各段小弧相加就是圆的周长2πR,所以有S=πr²。

以上就是关于关于圆的公式是什么全部的内容,包括:关于圆的公式是什么、圆的半径公式、圆的计算公式有哪些等相关内容解答,如果想了解更多相关内容,可以关注我们,你们的支持是我们更新的动力!

转载请注明原文地址:https://juke.outofmemory.cn/read/3697115.html

最新回复(0)