10以内所有质数的积减去最小的三位数,差是()


答案为110。

10以内的质数有:2、3、5、7;

则:2×3×5×7=210,

210-100=110;

故答案为:110。

扩展资料:

质数又称素数。一个大于1的自然数,除了1和它自身外,不能被其他自然数整除的数叫做质数;否则称为合数。

质数的个数是无穷的。欧几里得的《几何原本》中有一个经典的证明。它使用了证明常用的方法:反证法。具体证明如下:假设质数只有有限的n个,从小到大依次排列为p1,p2,……,pn,设N=p1×p2×……×pn,那么,N+1是素数或者不是素数。

如果N+1为素数,则N+1要大于p1,p2,……,pn,所以它不在那些假设的素数集合中。

如果 为合数,因为任何一个合数都可以分解为几个素数的积;而N和N+1的最大公约数是1,所以不可能被p1,p2,……,pn整除,所以该合数分解得到的素因数肯定不在假设的素数集合中。

因此无论该数是素数还是合数,都意味着在假设的有限个素数之外还存在着其他素数。所以原先的假设不成立。也就是说,素数有无穷多个。

其他数学家给出了一些不同的证明。欧拉利用黎曼函数证明了全部素数的倒数之和是发散的,恩斯特·库默的证明更为简洁,哈里·弗斯滕伯格则用拓扑学加以证明。

参考资料来源:百度百科-质数

10以内所有素数的和是17。即2+3+5+7=17。质数又称素数。指整数在一个大于1的自然数中,除了1和此整数自身外,没法被其他自然数整除的数。换句话说,只有两个正因数(1和自己)的自然数即为素数。比1大但不是素数的数称为合数。1和0既非素数也非合数。素数在数论中有着很重要的作用。质数的分布规律是以36N(N+1)为单位,随着N的增大,素数的个数以波浪形式渐渐增多。

质数(Prime number,又称素数),指在大于1的自然数中,除了1和该数自身外,无法被其他自然数整除的数(也可定义为只有1与该数本身两个正因数的数)。

大于1的自然数若不是素数,则称之为合数(也称为合成数)。算术基本定理确立了素数于数论里的核心地位:任何大于1的整数均可被表示成一串唯一素数之乘积。为了确保该定理的唯一性,1被定义为不是素数,因为在因式分解中可以有任意多个1(如3、1×3、1×1×3等都是3的有效约数分解)。

质数口诀:二、三、五、七和十一;十三后面是十七;十九、二三、二十九;三一、三七、四十一;四三、四七、五十三;五九、六一、六十七;七一、七三、七十九;八三、八九、九十七。合数并无特定的口诀,100以内合数数量较多共有74个。

10以内最大的质数是7。

拓展:

质数又称素数,有无限个。质数定义为在大于1的自然数中,除了1和它本身以外不再有其他因数的数称为质数。除了1和它自身外,不能被其他自然数整除的数叫做质数;否则称为合数。

合数是指 两个数之间的最大公约数只是1的那两个数的乘积; 两个数之间的公约数不只是1,用其中一个约数乘以最小的数,能整除,乘出来的那个数就是合数。

质数的个数是无穷的。欧几里得的《几何原本》中有一个经典的证明。它使用了证明常用的方法:反证法。

因此无论该数是素数还是合数,都意味着在假设的有限个素数之外还存在着其他素数。所以原先的假设不成立。也就是说,素数有无穷多个。

题主是否想询问“10以内的质数是什么吗”10以内的质数有2、3、5、7。根据查询相关资料信息:2是最小的质数,只能被1和2整除,其他的质数也只能被1和本身整除,不能被其他正整数整除。而4、6、8、9、10等数字不是质数,因为它们可以被2、3、5、7中的某一个质数整除。

以上就是关于10以内所有质数的积减去最小的三位数,差是()全部的内容,包括:10以内所有质数的积减去最小的三位数,差是()、10以内所有质数的和是多少、10以内最大的质数是多少等相关内容解答,如果想了解更多相关内容,可以关注我们,你们的支持是我们更新的动力!

转载请注明原文地址:https://juke.outofmemory.cn/read/3690569.html

最新回复(0)