电子能级(电子亚层)
1s
2s 2p
3s 3p 3d
4s 4p 4d 4f
5s 5p 5d 5f 5g
6s 6p 6d 6f 6g 6h
………………
能量从低到高1s2s2p3s3p4s3d4p5s…………
斜线45度划线确定
原子外电子先排能量高在排能量低,数字代表了第几层,这就是为什么没层数量是定值
注意4s3d4p
这就是能级交错
为简化原子系统,把最外层电子当做电子,内层电子和原子核一起当做原子实。当有2个电子,一个电子从基态被激发而跃迁到激发态,由于2个电子不在同一能级,对自旋方向没有要求,S=0或1,分子重态M=2S+1,所以可以有M=1单重态和M=3三重态。
请认真看完:
确定一个电子在原子核外的运动状态有四个特定的常数,我们称之为量子数,主量子数用字母n表示,与电子层有关,对应关系为:n=1,2,3,4,5,6,7电子层符号为:K,L,M,N,O,P,Q。角量子数用l表示,与能级有关,对应关系为:l=0,1,2,…(n-1)相应的能级符号为s,p,d,f,g…。我国化学家徐光宪指出,对于原子的外层电子而言,(n+07l)值越大,则能级越高。另外要指出的是教材上没有提出这个规律,可能是存在不足,但就我应用情况而言,目前还未出现问题。
1核外电子从内到外,最外层电子数依次不得超过2n�0�5,各周期的元素数:2、8、8、18、18、32、32。 2最外层电子数不得超过8,次外层电子数不得超过18。 这是由泡利不相容原理、洪特规则等量子力学原理决定的,在化学中属于结构化学的研究范畴,高中教材中只要求掌握规律,记住结论。 Ca的核外电子排布为“2 8 8 2”,如果第3层有9个电子就违反了第1条规则。事实上,第3个电子层有s、p、d这3个能级:s能级有1个轨道,最多2个电子;p能级有3个轨道,最多6个电子;d能级电子数为0。加起来最多可以排8个电子。如果有9个就不符合理论了。 您认为第3层最多有2×3�0�5=18个电子是不是?没错,第3层的确最多可以排满18个电子!不过,谁说非要先把第3层排满才能排第4层?可能因为第1、2层情况是这样,您就相信电子排布一定是从内到外吧?事实上,电子的填充顺序是按照能量从低到高的原则,第2层的所有能级能量都大于第1层,第3层能量也都大于第2层,但是第4层的部分能级(4s能级,4表示电子层,s表示能级名称)就不同了,位于靠外的4s能级能量居然反常地低于第3层的部分能级(3d能级)!这就是传说中的能级交错现象。 能级交错的影响是:到了填充第3层电子的时候,电子会先填充第3层的部分轨道(先不填满哦!),然后直接填充第4层的部分轨道(也不填满),最后再回过头来把填满第3层的工作做完。电子层大于3时,能级交错就很普遍了。而且电子层越多,能级交错越复杂。 最大电子数2n�0�5的规则并没有改变,出问题的是电子的填充规则。它只是想把能量更低的轨道先填满,而轨道的能量不是从内到外按顺序排列的。 “这其中,是不是因为能级交错现象,从而使d能级的电子数为0啊?” 这的确是能级交错造成的,能自己发现这一点真不错哦!我本来还担心问题没说得透彻,看来效果够了。 有兴趣的话,可以看看下面的原子结构基本知识,我尽量写得浅显: 核电荷数大的原子,核外电子就很多。事实上,核外电子并不是挤在一起绕核旋转的。不同的电子与原子核距离是不同的,而且距离原子核更近的电子能量更低。按照经典的概念,电子是在轨道上运动的,即原子核外有许多不同能量的轨道,轨道的能量就代表了电子运动的能量,以方便研究,距离原子核近的轨道能量低。 把电子轨道按照“能量相近的划分到一组”的原则,可以把电子轨道分为多组,每一组轨道被称为一个能层,也就是电子层。有些相邻轨道之间的能量差很大,而有些相邻轨道之间的能量差很小,所以能层的划分就变得比较简单。具体的划分方法是人为规定的。能层的名字有:K、L、M、N……等,一直按字母表顺序接下去,目前只有7个电子层。 在同一能层(电子层)中,有多个轨道,各轨道的能量有相同的,也有相近的。把同一能层中能量不同的轨道分组,而把能量相同的轨道放在一起,就成了能级。能级的划分与能层相似,属于能层的下一级。能级有s、p、d、f、g、h……等,一直按字母表顺序接下去,而不同的能层中能级数量也不同。第1个电子层只有1个s能级,第2个电子层有s、p2个能级。第3能层有3个能级……第7能层有7个能级。 对于每一个能级,都含有能量完全相同的轨道。s能级有1个轨道,p能级有3个轨道,d能级有5个轨道……之后每个能级的轨道数依次递增2。 根据泡利不相容原理,每个轨道最多容纳2个电子,而且这2个电子必须是自旋相反。遵守泡利不相容原理的微观粒子叫费米子,例如电子、中子、质子,而不遵守泡利不相容原理的微观粒子叫玻色子。 能层、能级、轨道、跃迁(电子在能量不同的轨道之间跳跃,会吸收或者释放能量)……这些概念都是量子物理学家玻尔(Niels Henrik David Bohr)提出来的,在结构化学中,由量子化学家鲍林加以推广。海森堡建立现代量子力学后,这个模型在物理中逐渐被淘汰,甚至已缺乏正确性,而在基础化学中得以保留,以简化问题。 从下图中可以看出,随着电子层数的增加,电子填充开始在多个能层之间反复迂回,而且能级交错越来越复杂。这就是著名的“构造原理”图(左边的图,顺着箭头就是电子的填充次序),右边是位于不同能级的轨道立体形状,元素周期表中只有少数几个元素(如钯元素)和核电荷数超大的元素不符号该原理。点击可以查看大图哦!
以上就是关于电子能量如何比较呢所处能级越高电子能量越大吗全部的内容,包括:电子能量如何比较呢所处能级越高电子能量越大吗、通俗的解释什么是单重态和三重态的电子能级、能级的电子轨道能量高低是怎样的等相关内容解答,如果想了解更多相关内容,可以关注我们,你们的支持是我们更新的动力!