log的计算就是乘方的逆过程。
如果a的x次方等于N(a>0,且a不等于1),那么数x叫做以a为底N的对数(logarithm),记作x=logaN。其中,a叫做对数的底数,N叫做真数。
计算方式:
根据2^3=8,可得log2 8=3。
扩展资料
对数的运算法则:
1、log(a) (M·N)=log(a) M+log(a) N
2、log(a) (M÷N)=log(a) M-log(a) N
3、log(a) M^n=nlog(a) M
4、log(a)blog(b)a=1
5、log(a) b=log (c) b÷log (c) a
指数的运算法则:
1、[a^m]×[a^n]=a^(m+n) 同底数幂相乘,底数不变,指数相加
2、[a^m]÷[a^n]=a^(m-n) 同底数幂相除,底数不变,指数相减
3、[a^m]^n=a^(mn) 幂的乘方,底数不变,指数相乘
4、[ab]^m=(a^m)×(a^m) 积的乘方,等于各个因式分别乘方,再把所得的幂相乘
log函数运算公式是按所指定的底数,返回某个数的对数。
1、log函数将自然数划为n个等区间,每个区间大小相等。但是每个区间的末端值以底数为倍数依次变化:10,100,1000; 2,4,8;即相对的小值间的间距占有和更大值的间距一样的区间。
2、函数y=logaX叫做对数函数。对数函数的定义域是(0,+∞)零和负数没有对数。
底数a为常数,其取值范围是(0,1)∪(1,+∞)。log的话我们是要加一个底数的,这个数可以是任何数,但lg不同,我们不能加底数,因为lg是log10的简写,就像㏑是loge的简写一样。
3、所有的对数函数计算核心都是利用多项式展开。然后多项式求和计算结果。为了性能或者精度的要求可能会对展开后的求和式子做进一步优化。
计算对数我们利用对数公式即可,按照对数函数y=log(a)X,已知常数a的大小,再代入未知数X,既可以求出Y的值。这里的Y就是X以a为底的时对数。
对数公式是什么
对数公式是数学公式中的一种,a^Y=X(a>0,且a≠1),则Y=log(a)X。在这个公式中,a叫做底数,X叫做真数,而Y叫做以a为底的X的对数。当a=10时,其对数叫做常用对数;当对数公式以e为底时,这时的对数就叫做自然对数。
对数公式的证明
已知a^log(a)(N)=N (a>0 ,a≠1),则可推导出恒等式:log(a) (a^N)=N;证明在a>0且a≠1,N>0时,可以设:当log(a)(N)=t,如果满足(t∈R)则有a^t=N,最后得出结论a^(log(a)(N))=a^t=N;因此该恒等式成立。
根据对数公式的推导公式
设b=a^m,a=c^n,则b=(c^n)^m=c^(mn) ①对①取以a为底的对数,有:log(a)(b)=m ②对①取以c为底的对数,有:log(c)(b)=mn ③③/②,得:log(c)(b)/log(a)(b)=n=log(c)(a)∴log(a)(b)=log(c)(b)/log(c)(a)。
log2 12=log2(4x3)=log24+log23=log2 2^2+log2 3=2log 2 2+log2 3=2+log2 3
把真数化成n个因数的乘积,然后利用公式loga(x1x2x3xn)=logax1+logax2+logx3+logxn
再化简,把对数能开出来的开出来,如果不能开出来的就保留。
以上就是关于log怎么计算全部的内容,包括:log怎么计算、求log函数运算公式大全、对数的计算方法等相关内容解答,如果想了解更多相关内容,可以关注我们,你们的支持是我们更新的动力!