三角函数是基本初等函数之一。
是以角度(数学上最常用弧度制,下同)为自变量,角度对应任意角终边与单位圆交点坐标或其比值为因变量的函数。也可以等价地用与单位圆有关的各种线段的长度来定义。
三角函数在研究三角形和圆等几何形状的性质时有重要作用,也是研究周期性现象的基础数学工具。在数学分析中,三角函数也被定义为无穷级数或特定微分方程的解,允许它们的取值扩展到任意实数值,甚至是复数值。
常见的三角函数包括正弦函数、余弦函数和正切函数。在航海学、测绘学、工程学等其他学科中,还会用到如余切函数、正割函数、余割函数、正矢函数、余矢函数、半正矢函数、半余矢函数等其他的三角函数。不同的三角函数之间的关系可以通过几何直观或者计算得出,称为三角恒等式。
三角函数一般用于计算三角形中未知长度的边和未知的角度,在导航、工程学以及物理学方面都有广泛的用途。另外,以三角函数为模版,可以定义一类相似的函数,叫做双曲函数。常见的双曲函数也被称为双曲正弦函数、双曲余弦函数等等。
扩展资料:
三角函数的起源:
早期对于三角函数的研究可以追溯到古代。古希腊三角术的奠基人是公元前2世纪的喜帕恰斯。他按照古巴比伦人的做法,将圆周分为360等份(即圆周的弧度为360度,与现代的弧度制不同)。对于给定的弧度,他给出了对应的弦的长度数值,这个记法和现代的正弦函数是等价的。
喜帕恰斯实际上给出了最早的三角函数数值表。然而古希腊的三角学基本是球面三角学。这与古希腊人研究的主体是天文学有关。梅涅劳斯在他的著作《球面学》中使用了正弦来描述球面的梅涅劳斯定理。
古希腊三角学与其天文学的应用在埃及的托勒密时代达到了高峰,托勒密在《数学汇编》(Syntaxis Mathematica)中计算了36度角和72度角的正弦值,还给出了计算和角公式和半角公式的方法。托勒密还给出了所有0到180度的所有整数和半整数弧度对应的正弦值。
参考资料来源:百度百科—三角函数
tan公式是:
tana=sina/cosa
1、设α为任意角,终边相同的角的同一三角函数的值相等:tan(2kπ+α)=tanα
2、设α为任意角,π+α的三角函数值与α的三角函数值之间的关系:tan(π+α)=tanα
3、任意角α与-α的三角函数值之间的关系:tan(-α)=-tanα
扩展资料:
平方关系:
sin^2(α)+cos^2(α)=1
tan^2(α)+1=sec^2(α)
cot^2(α)+1=csc^2(α)
积的关系:
sinα=tanαcosα cosα=cotαsinα
tanα=sinαsecα cotα=cosαcscα
secα=tanαcscα cscα=secαcotα
三角函数tan公式有如下:
倒数关系:
tanα·cotα=1
sinα·cscα=1
cosα·secα=1
商的关系:
sinα/cosα=tanα=secα/cscα
cosα/sinα=cotα=cscα/secα
平方关系:
sin^2(α)+cos^2(α)=1
1+tan^2(α)=sec^2(α)
1+cot^2(α)=csc^2(α)
二倍角公式:tan2A=(2tanA)/(1-tan^2(A))
三倍角公式:tan3a=tana·tan(π/3+a)·tan(π/3-a)
两角和与差的tan三角函数公式
tan(α+β)=(tanα+tanβ)/(1-tanαtanβ)
tan(α-β)=(tanα-tanβ)/(1+tanα·tanβ)
相关信息:
在直角坐标系中(如图1)即tanθ=y/x,三角函数是数学中属于初等函数中超越函数的一类函数。它们的本质是任意角的集合与一个比值的集合的变量之间的映射。通常的三角函数是在平面直角坐标系中定义的,其定义域为整个实数域。
另一种定义是在直角三角形中,但并不完全。现代数学把它们描述成无穷数列的极限和微分方程的解,将其定义扩展到复数系。由于三角函数的周期性,它并不具有单值函数意义上的反函数。
tan三角函数公式有:
半角公式。
tan(α/2)=sinα/(1+cosα)=(1-cosα)/sinα。
倍角公式。
tan2α=(2tanα)/(1-tanα^2)。
降幂公式。
tan^2(α)=(1-cos(2α))/(1+cos(2α))。
万能公式。
tanα=2tan(α/2)/。
两角和与差公式。
tan(α+β)=(tanα+tanβ)/(1-tanαtanβ)。
tan(α-β)=(tanα-tanβ)/(1+tanαtanβ)。
和差化积公式。
tanα+tanβ=sin(α+β)/cosαcosβ=tan(α+β)(1-tanαtanβ)。
tanα-tanβ=sin(α-β)/cosαcosβ=tan(α-β)(1+tanαtanβ)。
三角函数
三角函数是数学中属于初等函数中的超越函数的一类函数。它们的本质是任意角的集合与一个比值的集合的变量之间的映射。
通常的三角函数是在平面直角坐标系中定义的,其定义域为整个实数域。另一种定义是在直角三角形中,但并不完全。现代数学把它们描述成无穷数列的极限和微分方程的解,将其定义扩展到复数系。
由于三角函数的周期性,它并不具有单值函数意义上的反函数。
三角函数在复数中有较为重要的应用。在物理学中,三角函数也是常用的工具。
以上就是关于三角函数tan是什么意思全部的内容,包括:三角函数tan是什么意思、tan公式是什么、tanx公式是什么等相关内容解答,如果想了解更多相关内容,可以关注我们,你们的支持是我们更新的动力!