因为AB=0,所以矩阵B的列向量都是线性方程组AX=0的解;则矩阵B的列向量组的秩,不大于方程组AX=0的基础解系的个数,也就是说矩阵B的列向量组可以由AX=0 的基础解系线性表示,所以R(B) <= n-R(A),故R(A)+R(B)小于等于n。
在线性代数中,一个矩阵A的列秩是A的线性独立的纵列的极大数目。类似地,行秩是A的线性无关的横行的极大数目。即如果把矩阵看成一个个行向量或者列向量,秩就是这些行向量或者列向量的秩,也就是极大无关组中所含向量的个数。
扩展资料:
矩阵的秩的性质:
1、矩阵的行秩,列秩,秩都相等。
2、初等变换不改变矩阵的秩。
3、矩阵的乘积的秩Rab<=min{Ra,Rb};
4、设矩阵A=(aij)sxn的列秩等于A的列数n,则A的列秩,秩都等于n。
5、当r(A)<=n-2时,最高阶非零子式的阶数<=n-2,任何n-1阶子式均为零,而伴随阵中的各元素就是n-1阶子式再加上个正负号,所以伴随阵为0矩阵。
6、当r(A)<=n-1时,最高阶非零子式的阶数<=n-1,所以n-1阶子式有可能不为零,所以伴随阵有可能非零(等号成立时伴随阵必为非零)。
当A交B等于A并B:即事件A和B的交集等于事件A和B的并集。
集合论中,设A,B是两个集合,由所有属于集合A且属于集合B的元素所组成的集合,叫做集合A与集合B的交集。即:A∩B= {x|x∈A∧x∈B}。记作A∩B,读作“A与B的交集”。
若A和B是集合,则A和B并集是有所有A的元素和所有B的元素,而没有其他元素的集合。A和B的并集通常写作 "A∪B",读作“A并B”,用符号语言表示,即:A∪B={x|x∈A,或x∈B}。
扩展资料:
相关的运算:
1、若两个集合A和B的交集为空,则说他们没有公共元素,写作:A∩B = ∅。例如集合 {1,2} 和 {3,4} 不相交,写作 {1,2} ∩ {3,4} = ∅。
2、任何集合与空集的交集都是空集,即A∩∅=∅。
3、更一般的,交集运算可以对多个集合同时进行。例如,集合A、B、C和D的交集为A∩B∩C∩D=A∩[B∩(C ∩D)]。交集运算满足结合律,即A∩(B∩C)=(A∩B) ∩C。
参考资料来源:百度百科-交集
参考资料来源:百度百科-并集
条件概率是P(A|B)是在B发生的条件下A发生的概率,也就是说B不发生A也不发生,B发生A才可能发生。
P(AB)是AB同时发生的概率。
两个独立时间如果用条件概率,因为B对A没影响,所以这种情况下条件概率=同时发生概率o(∩_∩)o
以上就是关于A并B为什么是R呢全部的内容,包括:A并B为什么是R呢、当A交B等于A并B是什么意思、什么情况下A并B等于A交B等相关内容解答,如果想了解更多相关内容,可以关注我们,你们的支持是我们更新的动力!