量子通信是什么

安守本份2023-04-25  22

这意味着由我国科学家自主研制的世界首颗量子科学实验卫星“墨子号”在酒泉卫星发射中心成功发射,除了用这枚卫星进行一些科学实验外,还将在世界上首次实现卫星和地面之间的量子通信。这也将是跨度最大、史上最安全的通信网络。

提到“量子”一词,大多数人想到的可能是玄之又玄的量子物理,以及爱因斯坦那句著名的“上帝不掷骰子”的断言。在我们的过往印象中,量子物理经常与“不确定性”、“测不准”等词汇联系在一起,然而我们又知道,通信最重要的就是稳定、安全、可靠。那么,量子与通信,表面上互相矛盾的两个东西是如何联系到一起的呢?要了解这一点,我们还是先从传统通信为什么需要“量子”说起吧。

传统通信的局限性

众所周知,密码这东西现在已经充斥了我们的生活。像网购转账、登陆微信,甚至在我们看不见的信息传输途中,都需要用到密码,因为它能保证通信和交易的安全。不过,有了加密,就有破解密码的人,这对死敌的角力始终贯穿在我们整个通信的 历史 中。尤其在战争年代,解密的成功与否甚至足以影响最终的战局。在二战期间,美军正是因为破解了日军电报的加密方式,从而掌握日军高层的行踪,最终成功击杀了其海军总司令山本五十六,为太平洋战争的获胜奠定了基础。除此之外,直接窃听和截获信息也是很常见的泄密方式。如**《窃听风云》讲述的正是通过窃听他人通信而发生的一系列故事。

人们一直在想,是否存在一种安全传输信息的方法呢?我们可以总结一下,“使通信保密”的思路其实有两种。一种是物理加密,比如在A和B之间拉一条专线,专线中间布满岗哨,任何想截获信息的间谍必须在光缆上做手脚才能窃听,而这必然会被哨兵拿下。在这种确保安全的信道中,我们甚至无需对信息加密,直接用明文交换信息就可以了。但是,用物理隔离的方法终究不现实,它的效率低,成本高,距离有限,只有少数重要且有条件的岗位才用得起这种方式。

另一种是信息加密,就是把封装信息加上密码后通过公共信道传递,这相当于把它放在一个带锁的小箱子里进行运输,沿途就算被人截留了也没关系,因为只有对面拿到钥匙的人才能打开箱子,从而获取信息,这种做法就是我们目前常用的传统加密方式。

只是现有的密码体系还是通过增加计算复杂性来保证安全。例如应用最广泛的密码算法RSA,用的是两个非常大的质数的乘积来建立密钥。众所周知,对于两个大质数乘积进行因式分解,除暴力穷举外并无更好的方式。资料显示,用现有最快的传统计算机对一个500位的RSA密钥进行穷举破解,耗时将达到百亿年——几乎等于不可破解。

但从理论上讲,只要有足够先进的计算机,任何有限长度的密码都可以被破译。随着计算机技术更新迭代,接下来可能出现更快更强的计算机,比如研发中的量子计算机等。在那时候,如果无法升级出对应的加密方式,那么原有的密码将不再安全,金融系统和个人隐私等领域都将彻底陷入混乱。

面对未来可能出现的困境,人们需要找出新的加密手段。此时,量子物理的发展为人们带来了新的思路。

从量子货币到量子保密通信

20世纪初,量子物理学取得了长足发展。在物理学家不断刷新对量子力学认知的同时,当时的密码学家忽然意识到一个问题:利用量子不可分割、不可复制的特性,人类是否有可能发展出一种永不陷落的安全体系?

20世纪60年代末,美国哥伦比亚大学的斯蒂芬·威斯纳(Stephen Wiesner)提出了在今天看来仍十分超前的量子货币概念。量子货币的理论基础是“海森堡不确定性原理”及其推论“不可克隆定理”。用通俗的话解释,他打算在钞票上放置“囚禁”光子的装置,通过检测光子独一无二的偏振方向来验证钞票真伪。这种做法在理论上确实可以制造出不可伪造的钞票,然而它的缺点也一目了然——验证真伪所需要付出的代价太高,成本比钞票本身的面额还大得多。威斯纳的想法最终被认定为过于超前,多家学术期刊拒绝了他的论文。

前面说到,量子有两项特性,一个是不可分割,一个是不可复制。本内特指出,因为光量子具有不可分割性,所以在单光子发射的情况下,窃听者不可能采用将光子分成两半,一半用于获得密钥,一半传输给接收方的方式来避免被发现。与此同时,因为光量子是无法准确被测量的,所以不能被窃听者复制。换句话说,窃听者无法通过准确测量光子,克隆出一个一模一样的量子来获取信息。也就是说,在量子通信的范畴内,只要窃听者窃取信息就必定会被发现,这是它相较传统通信技术的一大改变。

1997年,奥地利科学家安东·蔡林格(Anton Zeilinger)在室内首次完成了量子隐形传态的原理性实验验证,成为量子信息实验领域的经典之作。当时,中科院院士、中国科学技术大学教授潘建伟正在奥地利留学,跟随导师蔡林格参与了整个实验。回国后,潘建伟在中国科学技术大学组建了量子信息实验室,经十余年耕耘,目前,潘建伟团队已成为世界范围内量子信息实验领域的领头羊。这次上天的“墨子号”卫星正是这个团队的最新杰作。

量子通信是如何实现的?

说了这么多,那么量子通信到底是如何实现的呢?在解释前,我们首先要清楚两个概念。

第一个概念是光的偏振。我们知道光具有波动性,也就是光在传播过程中,是一边振动,一边往前走,振动可以是空间内垂直于传播方向的任意方向。但是我们可以在中途加一个偏光器,让振动方向垂直偏光器的光才能通过。这样一来,通过的光亮度会大大减弱,从而减少眼睛的负担,这个技术在太阳眼镜、电脑显示器和照相机中都有应用。

第二个概念是基底,就是空间维度的轴。在二维空间上,它是X和Y,在三维空间则是X、Y、Z这三轴。让我们试着在脑内构建两个不同的基底,一个是水平X轴、垂直Y轴的水平垂直基底,另一个是倾斜45°,呈X形状的斜45°基底。我们把这两组基底想象成偏振器,那么当一束光通过某个基底后,只有这个方向偏振的光子被保留下来,也就是说这个光子的偏振状态是唯一的。好比一根绳子穿过篱笆,抓住一头上下甩动,篱笆对于绳子就像“透明”的,不会干扰绳子摆动,但如果你左右摆动,绳子的波就被篱笆阻挡了。

明确了这两个概念后,我们来看如何实现从A到B的密钥传输。

首先,发信人A用水平垂直基底和斜45°基底对光子进行制备,并对制备后的偏振状态进行赋值。比如分别把他们在X轴偏振的光子记为1,Y轴偏振的记为0。也就是说,从水平垂直基底上筛出的光子,如果偏振状态表现出是0°,则代表二进制数1;如果是90°,则代表二进制数0。另一种基底也是同样道理。

之后,A随机选择一批具有一定偏振状态的光子,通过正常的信道逐个发送给收信人B。此时,光子的赋值可以记作一个长度为N的二进制串。B在接收到A的光子后,随机选择一种基底进行测量。如果B和A选择的是一样的基底,那么测出来的结果就会跟A的赋值一样。如果选错了基底,光子就会无法通过,从而呈现出完全随机的表现。因为只有0和1这两种赋值,所以在这种情况下,错误率是50%。

随机脉冲序列密匙

在这之后,B把测量结果通过其他信道,比如公开打电话之类的,跟A进行核对。他不需要告诉A具体收到什么结果,只要告诉A他选取了什么基底就足够了。这样就能剔除错误结果,保留正确的结果,从而形成长度为M(M<n)的二进制串,成为原始密钥。< span="" style="box-sizing: border-box;"></n)的二进制串,成为原始密钥。<>

这时,A已经知道B测量光子用的基底序列,那么他再次发送随机脉冲序列时立刻就知道B的哪些是对的,哪些是错的。于是每次A给B发随机脉冲时,同时附上一份对错序列表。B收到脉冲以后,用对错表跟自己的测量结果进行比对。这样一来,他就知道哪几位上的数字是对的,从而获得正确的密钥。

那么,问题来了,为什么对于这样的通信,旁人无法窃听?我们可以试着罗列出不同的可能性。

首先,如果选择在A传送光子时进行窃听,那么必然要对光子进行测量,由于A对基底的选择是随机的,窃听者不可能正好跟A选择一样的一组基底,假设有两组基底作为备选,每一次选择正确的概率只有1/2,如果这个基底序列达到20位,那就是1/2的20次方,序列越长,正确率越低,窃听者从而无法获得正确的密钥。

同时,由于窃听者对光子进行了观测,根据量子物理的理论,这种行为会干涉它的状态,从而导致它的偏振发生改变。B收到光子后,跟A进行核对,发现错误率明显提高了。说明中途肯定被别人窃听了,所以这条信道就不安全了,二者将停止通信。

如果是直接截获并克隆A和B之间的信息传输,然后慢慢研究呢?很抱歉,这也是不可能的。从“克隆”的意义上说,要想精确地复制一个物品,首先就要测量这个物品的所有信息。然而,对一个遵循量子规律的系统,我们不可能同时精确测量它的所有物理量,因为根据“海森堡测不准原理”,在同一时刻,不可能以相同精度测定量子的位置与动量,我们只能精确测定两者之一。那么,窃听者就算截获了A发送的光子,也无法完美复制出一个一模一样的给B,这样同样会导致窃听暴露。

即便窃听到了B的基底测量序列,并获得了A发送的对错表——这是有可能的,毕竟这些两步沟通都是通过经典信道完成——可窃听者也无法知道B的测量结果是什么。即便获得了B的测量结果,但正式通信时,窃听者也只有把光子拦截下来,再对照A的对错表才能知道密钥是什么。但这样一来,B就收不到光子了,窃听行为同样会暴露。

在这种情况下,由于光子是逐个发送的,一旦发现有一个光子失联,B可以随时中止通信,让窃听者收不到后面的信息,从而无功而返。

由此可见,从理论上讲,量子保密通信可以保证信道的绝对安全,不仅不易被窃听到信息,并且即使有人窃听的话,也可以在第一时间发觉,进而及时中断通信。由于它的这种高保密性的特点,量子通信有望应用到各种高密级的远程会议中。

量子通信的未来

当然,理论上绝对安全的量子保密通信,在实际应用中也存在漏洞,因为在单光子传送过程中会有噪音干扰,不存在理想状态那种绝对干净的信道。所以A必须发送多个携带相同信息的光子脉冲序列给B,保证他能够接收到其中一条。这时,窃听者可以伪装成噪音,截获其中一条,再按照之前提到的思路,从公共信道窃取B的基底序列和A的对错表,对照之后,一样可以获得正确的信息。但这里面涉及到了密码学中的降噪、诱骗态方案等问题,已经不属于量子通信本身的范畴,它需要我们通过其他方面的努力去克服,比如建设更好的信道等,在这里就不展开阐述了。

由于量子保密通信本身具有超高安全性的特点,它最适合的应用就是在军事需求方面,因此在研究初期,它得到我国国防经费的大力投入,在研究实力方面,军方的量子通信技术一向是最高的。

现在,随着技术的成熟,量子通信开始向民用领域拓展,实现科学技术转化成生产力。日前发布的《2016~2020年中国量子通信行业深度调研及投资前景预测报告》指出,量子通信在军事、国防、金融等信息安全领域有重大的应用价值和前景,不仅可用于军事、国防等领域的国家级保密通信,还可用于涉及秘密数据和票据的电信、证券、保险、银行、工商、地税、财政以及企业云存储、数据中心等领域,而技术相对成熟,未来市场容量极大。这份报告为我们勾画出未来量子通信应用的蓝图。

在这幅未来图景中,随着“墨子号”的顺利发射,我国对量子通信技术的应用即将进入新阶段。“墨子号”将首次实现卫星和地面间量子通信,初步构建我国广域量子通信系统,并推动量子通信在广域网无线加密中的发展。与此同时,陆地上的量子保密通信也在逐步走入产业化阶段,正在进行中的项目包括下半年即将完工并开通的“京沪干线”,以及沪杭量子通信干线,陆家嘴量子通信金融网、乌镇量子通信城域网等。

而且根据规划,在“墨子号”发射成功后,我国还将发射多颗卫星,于2020年实现亚洲与欧洲的洲际量子通信,届时联接亚洲与欧洲的洲际量子通信网也将建成。到2030年左右,我国有望建成全球化广域量子通信网络。

届时,这个天地一体的量子通信网络将代替传统加密方法,成为新的信息卫士,渗透到各个领域之中,默默守护我们的信息安全和个人隐私。

量子通信(Quantum

Teleportation)是指利用量子纠缠效应进行信息传递的一种新型的通讯方式。

量子通信是经典信息论和量子力学相结合的一门新兴交叉学科,与成熟的通信技术相比,量子通信具有巨大的优越性,具有保密性强、大容量、远距离传输等特点,是21世纪国际量子物理和信息科学的研究热点。

量子通信是20世纪80年代开始发展起来的新型交叉学科,是量子论和信息论相结合的新的研究领域。量子通信主要涉及:量子密码通信、量子远程传态和量子密集编码等,21世纪初,这门学科已逐步从理论走向实验,并向实用化发展。

量子通信又称量子隐形传送(QuantumTeleportation),“teleportation”一词是指一种无影无踪的传送过程。量子通信是由量子态携带信息的通信方式,它利用光子等基本粒子的量子纠缠原理实现保密通信过程。量子通信是一种全新通信方式,它传输的不再是经典信息而是量子态携带的量子信息,是未来量子通信网络的核心要素。

按照常理,信息的传播需要载体,而量子通信是不需要载体的信息传递。从物理学角度,可以这样来想象隐形传送的过程:先提取原物的所有信息,然后将这些信息传送到接收地点,接收者依据这些信息,选取与构成原物完全相同的基本单元(如:原子),制造出原物完美的复制品。量子隐形传送所传输的是量子信息,它是量子通信最基本的过程。人们基于这个过程提出了实现量子因特网的构想。量子因特网是用量子通道来联络许多量子处理器,它可以同时实现量子信息的传输和处理。相比于经典因特网,量子因特网具有安全保密特性,可实现多端的分布计算,有效地降低通信复杂度等一系列优点。

以上就是关于量子通信是什么全部的内容,包括:量子通信是什么、“量子通信”的原理及其意义是、等相关内容解答,如果想了解更多相关内容,可以关注我们,你们的支持是我们更新的动力!

转载请注明原文地址:https://juke.outofmemory.cn/read/3667854.html

最新回复(0)