数据分析方法有哪些

咖啡香2023-04-24  17

常用的数据分析方法有:聚类分析、因子分析、相关分析、对应分析、回归分析、方差分析。

1、聚类分析(ClusterAnalysis)

聚类分析指将物理或抽象对象的集合分组成为由类似的对象组成的多个类的分析过程。聚类是将数据分类到不同的类或者簇这样的一个过程,所以同一个簇中的对象有很大的相似性,而不同簇间的对象有很大的相异性。

2、因子分析(FactorAnalysis)

因子分析是指研究从变量群中提取共性因子的统计技术。因子分析就是从大量的数据中寻找内在的联系,减少决策的困难。因子分析的方法约有10多种,如重心法、影像分析法,最大似然解、最小平方法、阿尔发抽因法、拉奥典型抽因法等等。

3、相关分析(CorrelationAnalysis)

相关分析(correlationanalysis),相关分析是研究现象之间是否存在某种依存关系,并对具体有依存关系的现象探讨其相关方向以及相关程度。

4、对应分析(CorrespondenceAnalysis)

对应分析(Correspondenceanalysis)也称关联分析、R-Q型因子分析,通过分析由定性变量构成的交互汇总表来揭示变量间的联系。可以揭示同一变量的各个类别之间的差异,以及不同变量各个类别之间的对应关系。对应分析的基本思想是将一个联列表的行和列中各元素的比例结构以点的形式在较低维的空间中表示出来。

5、回归分析

研究一个随机变量Y对另一个(X)或一组(X1,X2,,Xk)变量的相依关系的统计分析方法。回归分析(regressionanalysis)是确定两种或两种以上变数间相互依赖的定量关系的一种统计分析方法。

6、方差分析(ANOVA/AnalysisofVariance)

又称“变异数分析”或“F检验”,是RAFisher发明的,用于两个及两个以上样本均数差别的显著性检验。由于各种因素的影响,研究所得的数据呈现波动状。

对应分析的相关距离相当于相关关系。

对应分析(Correspondence Analysis)又称为相应分析,是由法国统计学家于1970提出的,是在R型和Q型因子分析基础上,发展起来的一种多元相依的变量统计分析技术。它通过分析由定性变量构成的交互汇总表来揭示变量间的关系。

当以变量的--系列类别以及这些类别的分布图来描述变量之间的联系时,使用这一分析技术可以揭示同一变量的各个类别之间的差异以及不同变量各个类别之间的对应关系。

对应分析方法是通过对交互表的频数分析来确定变量及其类别之间的关系。例如,在分析顾客对不同品牌商品的偏好时,可以将商品与顾客的性别、收入水平、职业等进行交叉汇总。

汇总表中的每一项数字都代表着某-类顾客喜欢某-品牌的人数,这一人数也就是这类顾客与这一-品牌的“对应”点,代表着不同特点的顾客与品牌之间的联系。

通过对应分析,可以把品牌、顾客特点以及它们之间的联系同时反映在一个二维或三维的分布图上,顾客认为比较相似的品牌在图上的分布就会彼此靠近在一起。根据顾客特点与每一品牌之间的距离,就可以判断它们之间关系的密切程度。

一、方式不同:

1、主成分分析:

通过正交变换将一组可能存在相关性的变量转换为一组线性不相关的变量,转换后的这组变量叫主成分。

2、因子分析:

通过从变量群中提取共性因子,因子分析可在许多变量中找出隐藏的具有代表性的因子。

3、对应分析:

通过分析由定性变量构成的交互汇总表来揭示变量。

二、作用体现不同:

1、主成分分析:

主成分分析作为基础的数学分析方法,其实际应用十分广泛,比如人口统计学、数量地理学、分子动力学模拟、数学建模、数理分析等学科中均有应用。

2、因子分析:

因子分析在市场调研中有着广泛的应用,主要包括消费者习惯和态度研究、品牌形象和特性研究、服务质量调查、个性测试。

3、对应分析:

能把众多的样品和众多的变量同时作到同一张图解上,将样品的大类及其属性在图上直观而又明了地表示出来,具有直观性。另外,它还省去了因子选择和因子轴旋转等复杂的数学运算及中间过程,可以从因子载荷图上对样品进行直观的分类,是一种直观、简单、方便的多元统计方法。

扩展资料

主成分分析对于原先提出的所有变量,将重复的变量(关系紧密的变量)删去多余,建立尽可能少的新变量,使得这些新变量是两两不相关的,而且这些新变量在反映课题的信息方面尽可能保持原有的信息。

对应分析是由法国人Benzenci于1970年提出的,起初在法国和日本最为流行,然后引入到美国。对应分析法是在R型和Q型因子分析的基础上发展起来的一种多元统计分析方法,因此对应分析又称为R-Q型因子分析。

在因子分析中,如果研究的对象是样品,则需采用Q型因子分析;如果研究的对象是变量,则需采用R型因子分析。但是,这两种分析方法往往是相互对立的,必须分别对样品和变量进行处理。

1、聚类分析(Cluster Analysis)

聚类分析指将物理或抽象对象的集合分组成为由类似的对象组成的多个类的分析过程。聚类是将数据分类到不同的类或者簇这样的一个过程,所以同一个簇中的对象有很大的相似性,而不同簇间的对象有很大的相异性。聚类分析是一种探索性的分析,在分类的过程中,人们不必事先给出一个分类的标准,聚类分析能够从样本数据出发,自动进行分类。聚类分析所使用方法的不同,常常会得到不同的结论。不同研究者对于同一组数据进行聚类分析,所得到的聚类数未必一致。

2、因子分析(Factor Analysis)

因子分析是指研究从变量群中提取共性因子的统计技术。因子分析就是从大量的数据中寻找内在的联系,减少决策的困难。

因子分析的方法约有10多种,如重心法、影像分析法,最大似然解、最小平方法、阿尔发抽因法、拉奥典型抽因法等等。这些方法本质上大都属近似方法,是以相关系数矩阵为基础的,所不同的是相关系数矩阵对角线上的值,采用不同的共同性□2估值。在社会学研究中,因子分析常采用以主成分分析为基础的反覆法。

3、相关分析(Correlation Analysis)

相关分析(correlation analysis),相关分析是研究现象之间是否存在某种依存关系,并对具体有依存关系的现象探讨其相关方向以及相关程度。相关关系是一种非确定性的关系,例如,以X和Y分别记一个人的身高和体重,或分别记每公顷施肥量与每公顷小麦产量,则X与Y显然有关系,而又没有确切到可由其中的一个去精确地决定另一个的程度,这就是相关关系。

4、对应分析(Correspondence Analysis)

对应分析(Correspondence analysis)也称关联分析、R-Q型因子分析,通过分析由定性变量构成的交互汇总表来揭示变量间的联系。可以揭示同一变量的各个类别之间的差异,以及不同变量各个类别之间的对应关系。对应分析的基本思想是将一个联列表的行和列中各元素的比例结构以点的形式在较低维的空间中表示出来。

5、回归分析

研究一个随机变量Y对另一个(X)或一组(X1,X2,…,Xk)变量的相依关系的统计分析方法。回归分析(regression analysis)是确定两种或两种以上变数间相互依赖的定量关系的一种统计分析方法。运用十分广泛,回归分析按照涉及的自变量的多少,可分为一元回归分析和多元回归分析;按照自变量和因变量之间的关系类型,可分为线性回归分析和非线性回归分析。

6、方差分析(ANOVA/Analysis of Variance)

又称“变异数分析”或“F检验”,是RAFisher发明的,用于两个及两个以上样本均数差别的显著性检验。由于各种因素的影响,研究所得的数据呈现波动状。造成波动的原因可分成两类,一是不可控的随机因素,另一是研究中施加的对结果形成影响的可控因素。方差分析是从观测变量的方差入手,研究诸多控制变量中哪些变量是对观测变量有显著影响的变量。这个 还需要具体问题具体分析

以上就是关于数据分析方法有哪些全部的内容,包括:数据分析方法有哪些、对应分析的相关距离相当于什么、试述主成分分析,因子分析和对应分析三者之间的区别与联系等相关内容解答,如果想了解更多相关内容,可以关注我们,你们的支持是我们更新的动力!

转载请注明原文地址:https://juke.outofmemory.cn/read/3662972.html

最新回复(0)