因为整数有一个性质,就是分解质因数的唯一性,及把一个大于1的整数分解质因数,他的形式是唯一的。而如果1是素数,则分解的形式就唯一的了,因为可以乘若干个1。所以规定1不是素数。
全体正整数可以分为三类:
(1)只能被“1”和它本身整除的数叫做素数,如:2,3,5,7,11,…;
(2)除了“1”和它本身以外,还能被其他数整除的数叫做合数,如:4,6,8,9,…;
(3)“1”既不是素数,也不是合数。
比如,1 001能被哪些数整除,其实质是将1 001分解素因数,由1 001=7×11×13,而且只有这一种分解结果,由此知道1 001除了被1和它本身整除以外,还能被7,11,13整除若把“1”也算作素数,那么1 001分解素因数就会出现下面一些结果:
1 001=7×11×13,
1 001=1×7×11×13,
1 001=1×1×7×11×13,
……
也就是说,分解式中可随便添上几个因数“1”
这样做,一方面对求1 001的因数毫无必要,另一方面分解素因素结果不唯一,又增添了不必要的麻烦因此“1”不算作素数。
扩展资料
质数与黎曼猜想
我们之前谈到:质数与黎曼猜想之间有着千丝万缕的联系。1896年,法国科学院举行比赛:征稿证明黎曼定理。两位年轻的数学家阿达马和德·拉·瓦莱布桑获得了这一殊荣。
实际上这两位数学家并没有证明黎曼猜想,只是获得了一点进展,但是这一点进展就一举证明了欧拉和勒让德的猜想,把素数猜想变成了素数定理。黎曼猜想的威力可见一斑。
1901年,瑞典数学家科赫证明:如果黎曼猜想被证实,那么素数定理中的误差项c大约是√xln(x)的量级。
然而黎曼猜想到底是对是错?可能我们还需要等待许多年。即便黎曼猜想被证实,人们也只是在质数规律探索的过程中更近了一步,距离真正破解质数的规律,还有很长的路要走。也许质数就是宇宙留给人类的密码。
参考资料来源:百度百科-质数
不是。
质数定义为在大于1的自然数中,除了1和它本身以外不再有其他因数。
1、在一个大于1的数a和它的2倍之间(即区间(a, 2a]中)必存在至少一个素数。
2、存在任意长度的素数等差数列。
3、一个偶数可以写成两个合数之和,其中每一个合数都最多只有9个质因数。(挪威数学家布朗,1920年)
4、一个偶数必定可以写成一个质数加上一个合成数,其中合数的因子个数有上界。(瑞尼,1948年)
5、一个偶数必定可以写成一个质数加上一个最多由5个因子所组成的合成数。后来,有人简称这结果为 (1 + 5)(中国潘承洞,1968年)
6、一个充分大偶数必定可以写成一个素数加上一个最多由2个质因子所组成的合成数。简称为 (1 + 2)
扩展资料
合数指自然数中除了能被1和本身整除外,还能被其他数(0除外)整除的数。与之相对的是质数,而1既不属于质数也不属于合数。最小的合数是4。其中,完全数与相亲数是以它为基础的。
1、所有大于2的偶数都是合数。
2、所有大于5的奇数中,个位为5的都是合数。
3、除0以外,所有个位为0的自然数都是合数。
4、所有个位为4,6,8的自然数都是合数。
5、最小的(偶)合数为4,最小的奇合数为9。
6、每一个合数都可以以唯一形式被写成质数的乘积,即分解质因数。
参考资料:
1不是质数。
质数是指在大于1的自然数中,除了1和它本身以外不再有其他因数的自然数。
如果为合数,因为任何一个合数都可以分解为几个素数的积;而N和N+1的最大公约数是1,所以不可能被p1,p2,……,pn整除,所以该合数分解得到的素因数肯定不在假设的素数集合中。因此无论该数是素数还是合数,都意味着在假设的有限个素数之外还存在着其他素数。所以原先的假设不成立。也就是说,素数有无穷多个。
其他数学家给出了一些不同的证明,欧拉利用黎曼函数证明了全部素数的倒数之和是发散的,恩斯特·库默的证明更为简洁,哈里·弗斯滕伯格则用拓扑学加以证明。
1不是质数,除了1和本身外没有其它因数。整数有一个性质,即分解质因数的唯一性,及把一个大于1的整数分解质因数,形式是唯一的。如果1是素数,则分解的形式就是唯一的了,因为可以乘若干个1。所以规定1不是素数。 扩展资料 1不是质数,除了1和本身外没有其它因数。整数有一个性质,即分解质因数的唯一性,及把一个大于1的整数分解质因数,形式是唯一的。如果1是素数,则分解的形式就是唯一的了,因为可以乘若干个1。所以规定1不是素数。
以上就是关于1为什么不是素数(质数)全部的内容,包括:1为什么不是素数(质数)、1是质数么、1是不是质数等相关内容解答,如果想了解更多相关内容,可以关注我们,你们的支持是我们更新的动力!