方差是实际值与期望值之差平方的期望值,而标准差是方差算术平方根。方差是各个数据与平均数之差的平方的平均数
方差,通俗点讲,就是和中心偏离的程度!用来衡量一批数据的波动大小(即这批数据偏离平均数的大小)并把它叫做这组数据的方差。记作S2。 在样本容量相同的情况下,方差越大,说明数据的波动越大,越不稳定。样本中各数据与样本平均数的差的平方和的平均数叫做样本方差;样本方差的算术平方根叫做样本标准差。样本方差和样本标准差都是衡量一个样本波动大小的量,样本方差或样本标准差越大,样本数据的波动就越大。 方差和标准差。方差和标准差是测算离散趋势最重要、最常用的指标。方差是各变量值与其均值离差平方的平均数,它是测算数值型数据离散程度的最重要的方法。标准差为方差的算术平方根,用S²表示。方差相应的计算公式为标准差与方差不同的是,标准差和变量的计算单位相同,比方差清楚,因此很多时候我们分析的时候更多的使用的是标准差。标准差 ,是离均差平方的算术平均数(即:方差)的算术平方根,用σ表示。
公式如下所示:
样本标准差=方差的算术平方根=s=sqrt(((x1-x)^2 +(x2-x)^2 +(xn-x)^2)/(n-1))
总体标准差=σ=sqrt(((x1-x)^2 +(x2-x)^2 +(xn-x)^2)/n )
标准差的性质和应用
标准差定义是总体各单位标准值与其平均数离差平方的算术平均数的平方根。它反映组内个体间的离散程度。测量到分布程度的结果,原则上具有两种性质:
为非负数值,与测量资料具有相同单位。一个总量的标准差或一个随机变量的标准差,及一个子集合样品数的标准差之间,有所差别。
简单来说,标准差是一组数据平均值分散程度的一种度量。一个较大的标准差,代表大部分数值和其平均值之间差异较大;一个较小的标准差,代表这些数值较接近平均值。
样本标准差在真实世界中,除非在某些特殊情况下,找到一个总体的真实的标准差是不现实的。大多数情况下,总体标准差是通过随机抽取一定量的样本并计算样本标准差估计的。标准差是描述一组观察值离散趋势的常用指标,描述离散程度的指标还有:极差(全距)R=最大值-最小值式中n-1称为自由度。样本标准差总体标准差总体的指标称为参数,用希腊字母表示,如总体均数(μ),总体标准差(σ),总体率(π),样本的指标称为统计量,用拉丁字母表示,如样本均数(),样本标准差(S),样本率(P)。标准差的应用:(1)说明观察值离散程度的大小,若两组观察值单位相同,均数相近,则标准差愈小,表示观察值离散程度愈小。观察值围绕均数分布较密集,均数的代表性较好。(2)与均数一起描述正态分布资料的特征。(3)计算变异系数当两组观察值的单位不同或者两组单位相同而均数相差很大时,需计算变异系数比较两组资料的变异程度大小。(4)计算标准误。因为有两个定义,用在不同的场合:如是总体,标准差公式根号内除以n,如是样本,标准差公式根号内除以(n-1),
首先求出平均数x'。对于样本的数据,标准差^2=方差=各数据与x'之差的和再除以n-1,也就是[(x1-x')^2+(x2-x')^2++(xn-x')^2]/(n-1)。
对于总体的数据,标准差^2=方差=各数据与x'之差的和再除以n,也就是[(x1-x')^2+(x2-x')^2++(xn-x')^2]/n。
公式意义当数据分布比较分散(即数据在平均数附近波动较大)时,各个数据与平均数的差的平方和较大,方差就较大;当数据分布比较集中时,各个数据与平均数的差的平方和较小。因此方差越大,数据的波动越大;方差越小,数据的波动就越小。
样本中各数据与样本平均数的差的平方和的平均数叫做样本方差;样本方差的算术平方根叫做样本标准差。样本方差和样本标准差都是衡量一个样本波动大小的量,样本方差或样本标准差越大,样本数据的波动就越大。
创建空白工作簿或工作表。 请在“帮助”主题中选取示例。不要选取行或列标题。
从帮助中选取示例。
按 Ctrl+C。
在工作表中,选中单元格 A1,再按 Ctrl+V。
若要在查看结果和查看返回结果的公式之间切换,请按 Ctrl+`(重音符),或在“工具”菜单上,指向“公式审核”,再单击“公式审核模式”。
1
2
3
4
5
6
7
8
9
10
11
A
强度
1345
1301
1368
1322
1310
1370
1318
1350
1303
1299
公式 说明(结果)
=STDEV(A2:A11) 抗断强度的标准偏差 (2746391572)
=====================================================================================
Excel中共有四个用于计算标准差的公式,其中:
stdevp和stdevpa用于其参数是样本空间中全体样本的情况; stdev和stdeva用于其参数仅仅是样本空间中的一个子集的情况。
四个函数中有两个是以字母A结尾的,表示把逻辑值和文本值都计入了(TRUE 当作 1 ;文本或 FALSE 当作 0 );另两个表示忽略逻辑值和文本值。
标准差和标准误都是描述变异的指标,当样本数量一定时,标准差越大,标准误也越大。但是它们所表达的含义是不同的:标准差是描述个体观察值变异程度的大小。标准差越小,均数对一组观察值的代表性越好;标准误是描述样本均数变异程度及抽样误差的大小。标准误越小,用样本均数推断总体的可靠性越大。在应用中,一般来说:标准差与均数结合,用于描述观察值的分布范围,如医学参考值范围的估计;标准误与均数结合,用于估计总体均数可能出现的范围,如参数估计的置信区间。
标准差公式是一种数学公式。标准差也被称为标准偏差,或者实验标准差,公式如下所示:
标准差计算公式:标准差σ=方差开平方。
样本标准差=方差的算术平方根=s=sqrt(((x1-x)^2 +(x2-x)^2 +(xn-x)^2)/(n-1))。
总体标准差=σ=sqrt(((x1-x)^2 +(x2-x)^2 +(xn-x)^2)/n )。
注解:上述两个标准差公式里的x为一组数(n个数据)的算术平均值。当所有数(个数为n)概率性地出现时(对应的n个概率数值和为1),则x为该组数的数学期望。
标准差是什么?
标准差,中文环境中又常称均方差,是离均差平方的算术平均数的平方根,用σ表示。在概率统计中最常使用作为统计分布程度上的测量。标准差是方差的算术平方根。
标准差能反映一个数据集的离散程度。平均数相同的两组数据,标准差未必相同;原因是它的大小,不仅取决于标准值的离差程度,还决定于数列平均水平的高低。
以上就是关于什么叫样本方差和样本标准方差全部的内容,包括:什么叫样本方差和样本标准方差、什么叫标准差标准差的计算公式、计算器中的总体标准差和样本标准差有什么区别等相关内容解答,如果想了解更多相关内容,可以关注我们,你们的支持是我们更新的动力!