先求平面的法向量,然后过这一点和法向量求点到平面的垂线方程,再计算垂线和平面的交点,交点到那个点的距离就是点到平面的距离。P(X,Y,Z)到平面Ax+By+Cz+D=0的距离d=|AX+BY+CZ+D|/√[(A^2)+(B^2)+(C^2)]。特殊的有,当点在百平面内,则点到平面的距离为0。
1立体几何中,点到平面的距离公式应该先求平面的法向量,然后过这一点和法向量求点到平面的垂线方程,再计算垂线和平面的交点,交点到那个点的距离就是点到平面的距离。
2过空间的一点,和已知直线垂直的平面只有一个。
3因此,给定平面上的一点和垂直于该平面的一个非零向量,平面就确定了。
4这就是所谓的点法式方程的基础。
5任意垂直和一个平面的向量被称为法向量。
6法向量有无数个。
点到平面的距离就是:该点与平面内任意一点连成的线段,在平面的法向量上的射影长。所以点到平面的距离公式为:设该点与平面内任意一点的连线的向量为a向量,平面的法向量为n向量,距离为d=|an|/|n|即:a向量与n向量的数量积除以n向量的模。
在数学中,向量(也称为欧几里得向量、几何向量、矢量),指具有大小(magnitude)和方向的量。它可以形象化地表示为带箭头的线段。箭头所指:代表向量的方向;线段长度:代表向量的大小。与向量对应的量叫做数量(物理学中称标量),数量(或标量)只有大小,没有方向。
向量的记法:印刷体记作黑体(粗体)的字母(如a、b、u、v),书写时在字母顶上加一小箭头“→”。 [1] 如果给定向量的起点(A)和终点(B),可将向量记作AB(并于顶上加→)。在空间直角坐标系中,也能把向量以数对形式表示,例如xOy平面中(2,3)是一向量。
在物理学和工程学中,几何向量更常被称为矢量。许多物理量都是矢量,比如一个物体的位移,球撞向墙而对其施加的力等等。与之相对的是标量,即只有大小而没有方向的量。一些与向量有关的定义亦与物理概念有密切的联系,例如向量势对应于物理中的势能。
几何向量的概念在线性代数中经由抽象化,得到更一般的向量概念。此处向量定义为向量空间的元素,要注意这些抽象意义上的向量不一定以数对表示,大小和方向的概念亦不一定适用。因此,平日阅读时需按照语境来区分文中所说的"向量"是哪一种概念。不过,依然可以找出一个向量空间的基来设置坐标系,也可以透过选取恰当的定义,在向量空间上介定范数和内积,这允许我们把抽象意义上的向量类比为具体的几何向量。
|点(a,b,c) 到平面 Ax+By+Cz=D的距离
=|Aa+Bb+Cc-D| /√(A^2+B^2+C^2)
设平面外那个点为P,平面内任意一点为A,任意一点都行。
则距离为向量PA点积法向量再除以法向量的模。
公式中的平面方程为Ax+By+Cz+D=0,点P的坐标(x0,y0,z0),d为点P到平面的距离。
扩展资料:
在空间坐标系内,平面的方程均可用是xyz的三元一次方程Ax+By+Cz+D=0来表示。
由于平面的点法式方程A(x-x0)+B(y-y0)+C(z-z0)=0是x,y,x的一次方程,而任一平面都可以用它上面的一点及它的法线向量来确定,所以任何一个平面都可以用三元一次方程来表示。
参考资料来源:百度百科-平面方程
以上就是关于立体几何点到平面的距离公式全部的内容,包括:立体几何点到平面的距离公式、点到平面的距离公式立体几何建系,立体几何求点到平面的距离公式、空间向量求点到平面的距离等相关内容解答,如果想了解更多相关内容,可以关注我们,你们的支持是我们更新的动力!