45、51、64、57、91怎样分解质因数

mt什么意思2023-04-23  24

1、和差倍问题:

和差问题

和倍问题

差倍问题

已知条件

几个数的和与差

几个数的和与倍数

几个数的差与倍数

公式适用范围

已知两个数的和,差,倍数关系

公式

①(和-差)÷2=较小数

较小数+差=较大数

和-较小数=较大数

②(和+差)÷2=较大数

较大数-差=较小数

和-较大数=较小数

和÷(倍数+1)=小数

小数×倍数=大数

和-小数=大数

差÷(倍数-1)=小数

小数×倍数=大数

小数+差=大数

关键问题

求出同一条件下的

和与差

和与倍数

差与倍数

2、年龄问题的三个基本特征:

①两个人的年龄差是不变的;

②两个人的年龄是同时增加或者同时减少的;

③两个人的年龄的倍数是发生变化的;

3、归一问题的基本特点:

问题中有一个不变的量,一般是那个“单一量”,题目一般用“照这样的速度”……等词语来表示。

关键问题:

根据题目中的条件确定并求出单一量;

4、植树问题:

基本类型

在直线或者不封闭的曲线上植树,两端都植树

在直线或者不封闭的曲线上植树,两端都不植树

在直线或者不封闭的曲线上植树,只有一端植树

封闭曲线上植树

基本公式

棵数=段数+1

棵距×段数=总长

棵数=段数-1

棵距×段数=总长

棵数=段数

棵距×段数=总长

关键问题

确定所属类型,从而确定棵数与段数的关系

5、鸡兔同笼问题:

基本概念:

鸡兔同笼问题又称为置换问题、假设问题,就是把假设错的那部分置换出来;

基本思路:

①假设,即假设某种现象存在(甲和乙一样或者乙和甲一样):

②假设后,发生了和题目条件不同的差,找出这个差是多少;

③每个事物造成的差是固定的,从而找出出现这个差的原因;

④再根据这两个差作适当的调整,消去出现的差。

基本公式:

①把所有鸡假设成兔子:鸡数=(兔脚数×总头数-总脚数)÷(兔脚数-鸡脚数)

②把所有兔子假设成鸡:兔数=(总脚数一鸡脚数×总头数)÷(兔脚数一鸡脚数)

关键问题:找出总量的差与单位量的差。

6、盈亏问题:

基本概念:

一定量的对象,按照某种标准分组,产生一种结果:按照另一种标准分组,又产生一种结果,由于分组的标准不同,造成结果的差异,由它们的关系求对象分组的组数或对象的总量。

基本思路:

先将两种分配方案进行比较,分析由于标准的差异造成结果的变化,根据这个关系求出参加分配的总份数,然后根据题意求出对象的总量。

基本题型:

①一次有余数,另一次不足;

基本公式:总份数=(余数+不足数)÷两次每份数的差

②当两次都有余数;

基本公式:总份数=(较大余数一较小余数)÷两次每份数的差

③当两次都不足;

基本公式:总份数=(较大不足数一较小不足数)÷两次每份数的差

基本特点:

对象总量和总的组数是不变的。

关键问题:

确定对象总量和总的组数。

7、牛吃草问题:

基本思路:

假设每头牛吃草的速度为“1”份,根据两次不同的吃法,求出其中的总草量的差;再找出造成这种差异的原因,即可确定草的生长速度和总草量。

基本特点:

原草量和新草生长速度是不变的;

关键问题:

确定两个不变的量。

基本公式:

生长量=(较长时间×长时间牛头数-较短时间×短时间牛头数)÷(长时间-短时间);

总草量=较长时间×长时间牛头数-较长时间×生长量;

8、周期循环与数表规律:

周期现象:

事物在运动变化的过程中,某些特征有规律循环出现。

周期:

我们把连续两次出现所经过的时间叫周期。

关键问题:

确定循环周期。

闰 年:一年有366天;

①年份能被4整除;②如果年份能被100整除,则年份必须能被400整除;

平 年:一年有365天。

①年份不能被4整除;②如果年份能被100整除,但不能被400整除;

9、平均数:

基本公式:

①平均数=总数量÷总份数

总数量=平均数×总份数

总份数=总数量÷平均数

②平均数=基准数+每一个数与基准数差的和÷总份数

基本算法:

①求出总数量以及总份数,利用基本公式①进行计算

②基准数法:根据给出的数之间的关系,确定一个基准数;一般选与所有数比较接近的数或者中间数为基准数;以基准数为标准,求所有给出数与基准数的差;再求出所有差的和;再求出这些差的平均数;最后求这个差的平均数和基准数的和,就是所求的平均数,具体关系见基本公式②

10、抽屉原理:

抽屉原则一:

如果把(n+1)个物体放在n个抽屉里,那么必有一个抽屉中至少放有2个物体。

例:把4个物体放在3个抽屉里,也就是把4分解成三个整数的和,那么就有以下四种情况:

①4=4+0+0 ②4=3+1+0 ③4=2+2+0 ④4=2+1+1

观察上面四种放物体的方式,我们会发现一个共同特点:总有那么一个抽屉里有2个或多于2个物体,也就是说必有一个抽屉中至少放有2个物体。

抽屉原则二:

如果把n个物体放在m个抽屉里,其中n>m,那么必有一个抽屉至少有:

①k=[n/m ]+1个物体:当n不能被m整除时。

②k=n/m个物体:当n能被m整除时。

理解知识点:

[X]表示不超过X的最大整数。

例[4351]=4;[0321]=0;[29999]=2;

关键问题:

构造物体和抽屉。也就是找到代表物体和抽屉的量,而后依据抽屉原则进行运算。

如果你想要三年级至初三的免费课程和每日一练,加老师V可领取哟:xiaoyang91haoke

11、定义新运算:

基本概念:

定义一种新的运算符号,这个新的运算符号包含有多种基本(混合)运算。

基本思路:

严格按照新定义的运算规则,把已知的数代入,转化为加减乘除的运算,然后按照基本运算过程、规律进行运算。

关键问题:

正确理解定义的运算符号的意义。

注意事项:

①新的运算不一定符合运算规律,特别注意运算顺序。

②每个新定义的运算符号只能在本题中使用。

12、数列求和:

等差数列:

在一列数中,任意相邻两个数的差是一定的,这样的一列数,就叫做等差数列。

基本概念:

首项:等差数列的第一个数,一般用a1表示;

项数:等差数列的所有数的个数,一般用n表示;

公差:数列中任意相邻两个数的差,一般用d表示;

通项:表示数列中每一个数的公式,一般用an表示;

数列的和:这一数列全部数字的和,一般用Sn表示.

基本思路:

等差数列中涉及五个量:a1 ,an, d, n,sn,,通项公式中涉及四个量,如果己知其中三个,就可求出第四个;求和公式中涉及四个量,如果己知其中三个,就可以求这第四个。

基本公式:

通项公式:an = a1+(n-1)d;

通项=首项+(项数一1)×公差;

数列和公式:sn,= (a1+ an)×n÷2;

数列和=(首项+末项)×项数÷2;

项数公式:n= (an+ a1)÷d+1;

项数=(末项-首项)÷公差+1;

公差公式:d =(an-a1))÷(n-1);

公差=(末项-首项)÷(项数-1);

关键问题:

确定已知量和未知量,确定使用的公式;

13、二进制及其应用:

十进制:

用0~9十个数字表示,逢10进1;不同数位上的数字表示不同的含义,十位上的2表示20,百位上的2表示200。所以234=200+30+4=2×102+3×10+4。

=An×10n-1+An-1×10n-2+An-2×10n-3+An-3×10n-4+An-4×10n-5+An-6×10n-7+……+A3×102+A2×101+A1×100

注意:N0=1;N1=N(其中N是任意自然数)

二进制:

用0~1两个数字表示,逢2进1;不同数位上的数字表示不同的含义。

(2)= An×2n-1+An-1×2n-2+An-2×2n-3+An-3×2n-4+An-4×2n-5+An-6×2n-7

+……+A3×22+A2×21+A1×20

注意:An不是0就是1。

十进制化成二进制:

①根据二进制满2进1的特点,用2连续去除这个数,直到商为0,然后把每次所得的余数按自下而上依次写出即可。

②先找出不大于该数的2的n次方,再求它们的差,再找不大于这个差的2的n次方,依此方法一直找到差为0,按照二进制展开式特点即可写出。

14、加法乘法原理和几何计数:

加法原理:

如果完成一件任务有n类方法,在第一类方法中有m1种不同方法,在第二类方法中有m2种不同方法……,在第n类方法中有mn种不同方法,那么完成这件任务共有:m1+ m2 +mn种不同的方法。

关键问题:

确定工作的分类方法。

基本特征:

每一种方法都可完成任务。

乘法原理:

如果完成一件任务需要分成n个步骤进行,做第1步有m1种方法,不管第1步用哪一种方法,第2步总有m2种方法……不管前面n-1步用哪种方法,第n步总有mn种方法,那么完成这件任务共有:m1×m2×mn种不同的方法。

关键问题:

确定工作的完成步骤。

基本特征:

每一步只能完成任务的一部分。

直线:

一点在直线或空间沿一定方向或相反方向运动,形成的轨迹。

直线特点:

没有端点,没有长度。

线段:

直线上任意两点间的距离。这两点叫端点。

线段特点:

有两个端点,有长度。

射线:

把直线的一端无限延长。

射线特点:

只有一个端点;没有长度。

①数线段规律:总数=1+2+3+…+(点数一1);

②数角规律=1+2+3+…+(射线数一1);

③数长方形规律:个数=长的线段数×宽的线段数:

④数长方形规律:个数=1×1+2×2+3×3+…+行数×列数

15、质数与合数:

质数:

一个数除了1和它本身之外,没有别的约数,这个数叫做质数,也叫做素数。

合数:

一个数除了1和它本身之外,还有别的约数,这个数叫做合数。

质因数:

如果某个质数是某个数的约数,那么这个质数叫做这个数的质因数。

分解质因数:

把一个数用质数相乘的形式表示出来,叫做分解质因数。通常用短除法分解质因数。任何一个合数分解质因数的结果是唯一的。

分解质因数的标准表示形式:

N= ,其中a1、a2、a3……an都是合数N的质因数,且a1<a2<a3<……<an。< span="">

求约数个数的公式:

P=(r1+1)×(r2+1)×(r3+1)×……×(rn+1)

互质数:

如果两个数的最大公约数是1,这两个数叫做互质数。

16、约数与倍数:

约数和倍数:

若整数a能够被b整除,a叫做b的倍数,b就叫做a的约数。

公约数:

几个数公有的约数,叫做这几个数的公约数;其中最大的一个,叫做这几个数的最大公约数。

最大公约数的性质:

1、 几个数都除以它们的最大公约数,所得的几个商是互质数。

2、 几个数的最大公约数都是这几个数的约数。

3、 几个数的公约数,都是这几个数的最大公约数的约数。

4、 几个数都乘以一个自然数m,所得的积的最大公约数等于这几个数的最大公约数乘以m。

例如:12的约数有1、2、3、4、6、12;

18的约数有:1、2、3、6、9、18;

那么12和18的公约数有:1、2、3、6;

那么12和18最大的公约数是:6,记作(12,18)=6;

求最大公约数基本方法:

1、分解质因数法:先分解质因数,然后把相同的因数连乘起来。

2、短除法:先找公有的约数,然后相乘。

3、辗转相除法:每一次都用除数和余数相除,能够整除的那个余数,就是所求的最大公约数。

公倍数:

几个数公有的倍数,叫做这几个数的公倍数;其中最小的一个,叫做这几个数的最小公倍数。

12的倍数有:12、24、36、48……;

18的倍数有:18、36、54、72……;

那么12和18的公倍数有:36、72、108……;

那么12和18最小的公倍数是36,记作[12,18]=36;

最小公倍数的性质:

1、两个数的任意公倍数都是它们最小公倍数的倍数。

2、两个数最大公约数与最小公倍数的乘积等于这两个数的乘积。

求最小公倍数基本方法:1、短除法求最小公倍数;2、分解质因数的方法

17、数的整除:

基本概念和符号:

1、整除:如果一个整数a,除以一个自然数b,得到一个整数商c,而且没有余数,那么叫做a能被b整除或b能整除a,记作b|a。

2、常用符号:整除符号“|”,不能整除符号“ ”;因为符号“∵”,所以的符号“∴”;

整除判断方法:

1能被2、5整除:末位上的数字能被2、5整除。

2能被4、25整除:末两位的数字所组成的数能被4、25整除。

3能被8、125整除:末三位的数字所组成的数能被8、125整除。

4能被3、9整除:各个数位上数字的和能被3、9整除。

5能被7整除:

①末三位上数字所组成的数与末三位以前的数字所组成数之差能被7整除。

②逐次去掉最后一位数字并减去末位数字的2倍后能被7整除。

6能被11整除:

①末三位上数字所组成的数与末三位以前的数字所组成的数之差能被11整除。

②奇数位上的数字和与偶数位数的数字和的差能被11整除。

③逐次去掉最后一位数字并减去末位数字后能被11整除。

7能被13整除:

①末三位上数字所组成的数与末三位以前的数字所组成的数之差能被13整除。

②逐次去掉最后一位数字并减去末位数字的9倍后能被13整除。

整除的性质:

1如果a、b能被c整除,那么(a+b)与(a-b)也能被c整除。

2如果a能被b整除,c是整数,那么a乘以c也能被b整除。

3如果a能被b整除,b又能被c整除,那么a也能被c整除。

4如果a能被b、c整除,那么a也能被b和c的最小公倍数整除。

18、余数及其应用:

基本概念:

对任意自然数a、b、q、r,如果使得a÷b=q……r,且0<r<b,那么r叫做a除以b的余数,q叫做a除以b的不完全商。< span="">

余数的性质:

①余数小于除数。

②若a、b除以c的余数相同,则c|a-b或c|b-a。

③a与b的和除以c的余数等于a除以c的余数加上b除以c的余数的和除以c的余数。

④a与b的积除以c的余数等于a除以c的余数与b除以c的余数的积除以c的余数。

19、余数、同余与周期:

同余的定义:

①若两个整数a、b除以m的余数相同,则称a、b对于模m同余。

②已知三个整数a、b、m,如果m|a-b,就称a、b对于模m同余,记作a≡b(mod m),读作a同余于b模m。

同余的性质:

①自身性:a≡a(mod m);

②对称性:若a≡b(mod m),则b≡a(mod m);

③传递性:若a≡b(mod m),b≡c(mod m),则a≡ c(mod m);

④和差性:若a≡b(mod m),c≡d(mod m),则a+c≡b+d(mod m),a-c≡b-d(mod m);

⑤相乘性:若a≡ b(mod m),c≡d(mod m),则a×c≡ b×d(mod m);

⑥乘方性:若a≡b(mod m),则an≡bn(mod m);

⑦同倍性:若a≡ b(mod m),整数c,则a×c≡ b×c(mod m×c);

关于乘方的预备知识:

①若A=a×b,则MA=Ma×b=(Ma)b

②若B=c+d则MB=Mc+d=Mc×Md

被3、9、11除后的余数特征:

①一个自然数M,n表示M的各个数位上数字的和,则M≡n(mod 9)或(mod 3);

②一个自然数M,X表示M的各个奇数位上数字的和,Y表示M的各个偶数数位上数字的和,则M≡Y-X或M≡11-(X-Y)(mod 11);

费尔马小定理:

如果p是质数(素数),a是自然数,且a不能被p整除,则ap-1≡1(mod p)。

20、分数与百分数的应用:

基本概念与性质:

分数:把单位“1”平均分成几份,表示这样的一份或几份的数。

分数的性质:分数的分子和分母同时乘以或除以相同的数(0除外),分数的大小不变。

分数单位:把单位“1”平均分成几份,表示这样一份的数。

百分数:表示一个数是另一个数百分之几的数。

常用方法:

①逆向思维方法:从题目提供条件的反方向(或结果)进行思考。

②对应思维方法:找出题目中具体的量与它所占的率的直接对应关系。

③转化思维方法:把一类应用题转化成另一类应用题进行解答。最常见的是转换成比例和转换成倍数关系;把不同的标准(在分数中一般指的是一倍量)下的分率转化成同一条件下的分率。常见的处理方法是确定不同的标准为一倍量。

④假设思维方法:为了解题的方便,可以把题目中不相等的量假设成相等或者假设某种情况成立,计算出相应的结果,然后再进行调整,求出最后结果。

⑤量不变思维方法:在变化的各个量当中,总有一个量是不变的,不论其他量如何变化,而这个量是始终固定不变的。有以下三种情况:A、分量发生变化,总量不变。B、总量发生变化,但其中有的分量不变。C、总量和分量都发生变化,但分量之间的差量不变化。

⑥替换思维方法:用一种量代替另一种量,从而使数量关系单一化、量率关系明朗化。

⑦同倍率法:总量和分量之间按照同分率变化的规律进行处理。

⑧浓度配比法:一般应用于总量和分量都发生变化的状况。

----------------------------------

良师好课,尽在91!大家好,我们是91好课,高思教育旗下在线教育平台,有小学至高中的好课,有很多从教5-15年的北京好老师,有优质的辅导老师服务(每日一练、批改作业、学习报告等),希望能让更多的孩子享受更加优质的好课。

12=2×2×3

8=2×2×2

18=2×3×3

16=2×2×2×2

15=3×5

24=2×2×2×3

27=3×3×3

35=5×7

10=2×5

6=2×3

14=2×7

20=2×2×5

9=3×3

22=2×11

28=2×2×7

30=2×3×5

51=3×17

57=3×19

45=3×3×5

49=7×7

56=2×2×2×7

100=2×2×5×5

250=2×5×5×5

124=2×2×31

130=2×5×13

48=2×2×2×2×3,10,把下面各数分解质因数 12 8 18 16 15 24 27 35 10 6 14 20 9 22 28 30 51 57 45 49 56 100 250 124 130 48

210 91

51的因数有(1,3,17,51)

52的因数有(1,2,4,13,26,52)

53的因数有(1,53)

54的因数有(1,2,3,6,9,18,27,54)

55的因数有(1,5,11,55)

56的因数有(1,2,4,7,8,14,28,56)

57的因数有(1,3,19,57)

58的因数有(1,2,29,58)

59的因数有(1,59)

扩展资料:

找一个数的因数的方法,就用这个数从1开始去除,一直除到除数和商出现相近、相邻、相同时,然后找出等号左右两边的数,这些数就是要找的这个数的因数,重复的因数,只写一个。这种方法有助于学生的有序的思考,能形成明晰的解题思路,不容易漏找。 

例如:找出36的因数,我们也可以可以直接用36去除以1、2、3、4、5一直除到除数和商是同一个数时,就不再去除了。36不是5的倍数,那么就可以不用去除以5。

36÷1=36、36÷2=28、36÷3=12、36÷4=9、当36÷6=6时我们就不用往下除了,在这些算式中就可以找出36的所有因数,36的因数有1,36,2,18,3,12,4,9,6。也就是刚才算式中等号左右两边的数。可以按照从小到大的顺序写,36的因数有:1,2,3,4,6,9,12,18,36。

最大公约数的求法:

1、用分解质因数的方法,把公有的质因数相乘。

2、用短除法的形式求两个数的最大公约数。

3、特殊情况:如果两个数互质,它们的最大公约数是1。

如果两个数中较小的数是较大的数的约数,那么较小的数就是这两个数的最大公约数。

以上就是关于45、51、64、57、91怎样分解质因数全部的内容,包括:45、51、64、57、91怎样分解质因数、把下面各数分解质因数 12 8 18 16 15 24 27 35 10 6 14 20 9 22 28 30 51 5、51~59的因数有哪些等相关内容解答,如果想了解更多相关内容,可以关注我们,你们的支持是我们更新的动力!

转载请注明原文地址:https://juke.outofmemory.cn/read/3642767.html

最新回复(0)