传感器与变送器的区别是什么

日化产品2023-04-22  20

1、含义上的区别

传感器是能感受规定的被测量并按照一定的规律(数学函数法则)转换成可用信号的器件或装置。

变送器是从传感器发展而来的,凡是能输出标准信号的传感器。标准信号是指物理量的形式和数量范围都符合国际标准的信号。

2、作用上的区别

传感器是获取自然和生产领域中信息的主要途径与手段;传感器技术在发展经济、推动社会进步方面的重要作用;在现代工业生产尤其是自动化生产过程中,要用各种传感器来监视和控制生产过程中的各个参数,使设备工作在正常状态或最佳状态,并使产品达到最好的质量。

变送器的作用是检测工艺参数并将测量值以特定的信号形式传送出去,以便进行显示、调节。在自动检测和调节系统中的作用是将各种工艺参数如温度、压力、流量、液位、成分等物理量变换成统一标准信号,再传送到调节器和指示记录仪中,进行调节、指示和记录。

3、组成上的区别

传感器一般由敏感元件、转换元件、变换电路和辅助电源四部分组成。敏感元件直接感受被测量,并输出与被测量有确定关系的物理量信号;转换元件将敏感元件输出的物理量信号转换为电信号;变换电路负责对转换元件输出的电信号进行放大调制;转换元件和变换电路需要辅助电源供电。

变送器主要由测量部分、放大器和反馈部分组成。测量部分用于检测被测变量x,并将其转换成能被放大器接受的输入信号Zi。反馈部分则把变送器的输出信号y转换成反馈信号Zf,再回送至输入端。Zi与调零信号Zo代数和同反馈信号Zf进行比较,其差值ε送入放大器放大,转换成标准输出信号y。

参考资料来源:百度百科-传感器

参考资料来源:百度百科-变送器

常见的压力传感器有四种:

1、应变式压力传感器

应变式压力传感器主要通过测量弹性元件应变来测量压力的传感器。根据制作材料的不同,应变元件分金属及半导体。当导体与半导体材料出现机械变形时,其电阻值会发生变化。

2、压阻式压力传感器

压阻压力传感器是采用单晶硅材料的压阻效应及集成电路制作而成的传感器。单晶硅材料受到力的作用,电阻率会出现变化,此时通过测量电路,正比于力变化的电信号就会输出。和粘贴式应变计有所不同,主要通过硅膜片感受被测压力的。

3、电容式压力传感器

电容式压力传感器主要采用电容,将被测压力转成电容值改变的压力传感器。电容器的电极选择圆形金属薄膜或镀金属薄膜,当薄膜感受压力出现变形,此时电容量发生变化,形成电信号。

4、压电式压力传感器

压电式压力传感器采用压电效应,用电气元件和其他机械将压力转换成为电量,再进行相关测量工作的仪器。

南京沃天科技

想要了解更多压力变送器资讯,欢迎咨询南京沃天科技!

压力变送器主要由压力传感器、测量电路和过程连接件三部分组成。它能将压力传感器感受到的气体、液体等物理压力参数转变成标准的电信号,以供给指示报警仪、记录仪、调节器等二次仪表进行测量、指示和过程调节。在国内,目前在小型自动化控制方面运用的压力变送器一般基于压阻式原理,也就是压敏电阻受压后产生电阻变化,通过放大器放大并采用标准压力标定,即可进行压力检测。

压力变送器工作时注意事项:

1、变送器上切勿使用高于36V的电压,容易导致损坏。

2、变送器切勿用硬物碰触膜片,会损坏隔膜片。

3、被测介质不能结冰,否则传感器元件隔离膜片容易损伤,导致变送器破坏。

4、在测量蒸汽或其他高温介质时,其温度不应超过变送器使用时的极限温度,否则必须使用散热装置。

5、在测量蒸汽或其他高温介质时,为使变送器和管道连在一起,应使用散热管,并使用管道上的压力传至变压器。当被测介质为水蒸气时,散热管中要注入适量的水,以防过热蒸汽直接与变送器接触,致使损坏传感器。

6、在压力传输过程中,应注意几点:变送器与散热管连接处不可漏气;在打开阀门时要小心,以免被测介质直接冲击、损坏传感器膜片;必须保持管路畅通,避免管道中的沉积物弹出并损坏传感器膜片。

压力变送器的正确使用方法

压力传感器使用过程应注意考虑下列情况:

1、防止变送器与腐蚀性或过热的介质接触; 

2、防止渣滓在导管内沉积; 

3、测量液体压力时,取压口应开在流程管道侧面,以避免沉淀积渣; 

4、测量气体压力时,取压口应开在流程管道顶端,并且变送器也应安装在流程管道上部,以便积累的液体容易注入流程管道中;

5、导压管应安装在温度波动小的地方;

6、测量蒸汽或其它高温介质时,需接加缓冲管(盘管)等冷凝器,不应使变送器的工作温度超过极限;

7、冬季发生冰冻时,安装在室外的变送器必需采取防冻措施,避免引压口内的液体因结冰体积膨胀,导至传感器损坏;

8、测量液体压力时,变送器的安装位置应避免液体的冲击(水锤现象),以免传感器过压损坏;

9、接线时,将电缆穿过防水接头(附件)或绕性管并拧紧密封螺帽,以防雨水等通过电缆渗漏进变送器壳体内。

传感器的定义是:“能感受规定的被测量件并按照一定的规律转换成可用信号的器件或装置,通常由敏感元件和转换元件组成”。

变送器的定义:应用在工业现场、能输出标准信号的传感器称为变送器。这个术语有时与传感器通用。

在《自动控制原理》中,变送器是把传感器的输出信号转变为可被控制器识别的信号的转换器。至于有时候与传感器通用是因为现代的多数传感器的输出信号已经是通用的控制器可以接收的信号,此信号可以不经过变送器的转换直接为控制器所识别。所以,传统意义上的“变送器”意义应该是:“把传感器的输出信号转换为可以被控制器或者测量仪表所接受标准信号的仪器”。

传感器是什么

从它的名称来看,传与感二字。传是指传输,感是指感知。实际上是先有感知',其次转换,最后传输。因此传输是目的,转换是手段,感知是基础。把能够将被测变量(温度、励、液位、流量)感知出来的元件叫做敏感元件,把能够将感知出来的变量转换成非标准的电信号或其它形式输出信号叫做转换元件。因此传感器的组成由敏感元件和转换元件组成。

变送器是什么

从变送器的名称来看,有变、送二字。变是变换、送是输送。实际上先有变换再有输送,那么输送是目的,变换是基础。变换部分是将传感器传输过来的非标准电信号或其它形式信号变换成标准电信号,如4-20mA、1-5v, 然后再将标准信号输送至二次仪表。

变送器与传感器区别

1、接线制与电源:传感器有二线制、三线制、四线制的,有的需要额外供电电源,有的不需要供电电源。变送器基本上是两线制且供电电源与信号为同一组线。

2、信号:传感器输出的信号有非标准电信号或其它形式的信号,是微弱的非标准信号,变送器输出的是标准电信号,输出信号强。远距离则以标准电流信号传输,近距离则可以用标准电压信号进行传输。

3、一次仪表和二次仪表:变送器和传感器都是一次仪表。 一次仪表用于信号采集转换,二次仪表可接受一次仪表采集转换的信号,可用于显示、控制、报警、监控等方面。传感器与变送器做成一体式,即有一次仪表的功能, 又具备二次仪表的功能,也就是说的智能变送器。

差压变送器又叫压差变送器,是测量变送器两端压力之差的变送器,输出标准信号(如 4~20mA、0~5V)。差压变送器与一般的压力变送器不同的是它们均有2个压力接口, 差压变送器一般分为正压端和负压端,一般情况下, 差压变送器正压端的压力应大于负压段压力才能测量。

差压变送器是新型变送器,关键原材料和整机都需要经过严格组装和测试,差压变送器具有设计原理先进、品种规格齐全、安装使用简便等特点。由于该机型外观上完全融合了目前国内最为流行,并被广泛使用的两种变送器的结构优点,让使用者有耳目一新的感觉,同时与传统的1151、CECC等系列产品在安装上可直接替换,有很强的通用性和替代能力。为适合国内自动化水平的不断提高和发展,该系列产品除设计小巧精致外,更推出具有HART现场总线协议的智能化功能。

南京沃天科技

工作原理

被测介质压力变化--采集到信息--传输信号---主机分析--发出执行命令--执行器动作。

应用范围

其被广泛的应用到自动化控制领域,其涵盖所有气体及液体介质需要测量和监控压力变化的场所。

想要了解更多差压变送器资讯,欢迎咨询南京沃天科技!

变送器的种类很多,用在工控仪表上面的变送器主要有温度变送器,压力变送器,流量变送器,电流变送器,电压变送器等等。

变送器在仪器、仪表和工业自动化领域中起着举足轻重的作用。与传感器不同,变送器除了能将非电量转换成可测量的电量外,一般还具有一定的放大作用。

压力变送器:

压力变送器也称差变送器,主要由测压元件传感器、模块电路、显示表头、表壳和过程连接件等组成。它能将接收的气体、液体等压力信号转变成标准的电流电压信号,以供给指示报警仪、记录仪、调节器等二次仪表进行测量、指示和过程调节。

压力变送器测量原理是:流程压力和参考压力分别作用于集成硅压力敏感元件的两端,其差压使硅片变形(位移很小,仅μm级),以使硅片上用半导体技术制成的全动态惠斯登电桥在外部电流源驱动下输出正比于压力的mV级电压信号。由于硅材料的强性极佳,所以输出信号的线性度及变差指标均很高。工作时,压力变送器将被测物理量转换成mV级的电压信号,并送往放大倍数很高而又可以互相抵消温度漂移的差动式放大器。放大后的信号经电压电流转换变换成相应的电流信号,再经过非线性校正,最后产生与输入压力成线性对应关系的标准电流电压信号。

压力变送器根据测压范围可分成一般压力变送器(0001MPa~20MP3)和微差压变送器(0~30kPa)两种。

一体化温度变送器:

一体化温度变送器一般由测温探头(热电偶或热电阻传感器)和两线制固体电子单元组成。采用固体模块形式将测温探头直接安装在接线盒内,从而形成一体化的变送器。一体化温度变送器一般分为热电阻和热电偶型两种类型。

热电阻温度变送器是由基准单元、R/V转换单元、线性电路、反接保护、限流保护、V/I转换单元等组成。测温热电阻信号转换放大后,再由线性电路对温度与电阻的非线性关系进行补偿,经V/I转换电路后输出一个与被测温度成线性关系的4~20mA的恒流信号。

热电偶温度变送器一般由基准源、冷端补偿、放大单元、线性化处理、V/I转换、断偶处理、反接保护、限流保护等电路单元组成。它是将热电偶产生的热电势经冷端补偿放大后,再帽由线性电路消除热电势与温度的非线性误差,最后放大转换为4~20mA电流输出信号。为防止热电偶测量中由于电偶断丝而使控温失效造成事故,变送器中还设有断电保护电路。当热电偶断丝或接解不良时,变送器会输出最大值(28mA)以使仪表切断电源。

一体化温度变送器具有结构简单、节省引线、输出信号大、抗干扰能力强、线性好、显示仪表简单、固体模块抗震防潮、有反接保护和限流保护、工作可靠等优点。

一体化温度变送器的输出为统一的4~20mA信号;可与微机系统或其它常规仪表匹配使用。也可用户要求做成防爆型或防火型测量仪表。

液位变送器:

1、浮球式液位变送器

浮球式液位变送器由磁性浮球、测量导管、信号单元、电子单元、接线盒及安装件组成。

一般磁性浮球的比重小于05,可漂于液面之上并沿测量导管上下移动。导管内装有测量元件,它可以在外磁作用下将被测液位信号转换成正比于液位变化的电阻信号,并将电子单元转换成4~20mA或其它标准信号输出。该变送器为模块电路,具有耐酸、防潮、防震、防腐蚀等优点,电路内部含有恒流反馈电路和内保护电路,可使输出最大电流不超过28mA,因而能够可靠地保护电源并使二次仪表不被损坏。

2、浮简式液位变送器

浮筒式液位变送器是将磁性浮球改为浮筒,它是根据阿基米德浮力原理设计的。浮筒式液位变送器是利用微小的金属膜应变传感技术来测量液体的液位、界位或密度的。它在工作时可以通过现场按键来进行常规的设定操作

3、静压或液位变送器

该变送器利用液体静压力的测量原理工作。它一般选用硅压力测压传感器将测量到的压力转换成电信号,再经放大电路放大和补偿电路补偿,最后以4~20mA或0~10mA电流方式输出。

电容式物位变送器:

电容式物位变送器适用于工业企业在生产过程中进行测量和控制生产过程,主要用作类导电与非导电介质的液体液位或粉粒状固体料位的远距离连续测量和指示。

电容式液位变送器由电容式传感器与电子模块电路组成,它以两线制4~20mA恒定电流输出为基型,经过转换,可以用三线或四线方式输出,输出信号形成为1~5V、0~5V、0~10mA等标准信号。电容传感器由绝缘电极和装有测量介质的圆柱形金属容器组成。当料位上升时,因非导电物料的介电常数明显小于空气的介电常数,所以电容量随着物料高度的变化而变化。变送器的模块电路由基准源、脉宽调制、转换、恒流放大、反馈和限流等单元组成。采用脉宽调特原理进行测量的优点是频率较低,对周围元射频干扰、稳定性好、线性好、无明显温度漂移等。

超声波变送器:

超声波变送器分为一般超声波变送器(无表头)和一体化超声波变送器两类,一体化超声波变送器较为常用。

一体化超声波变更新器由表头(如LCD显示器)和探头两部分组成,这种直接输出4~20mA信号的变送器是将小型化的敏感元件(探头)和电子电路组装在一起,从而使体积更小、重量更轻、价格更便宜。超声波变送器可用于液位。物位的测量和开渠、明渠等流量测量,并可用于测量距离。

锑电极酸度变送器:

锑电极酸度变送器是集PH检测、自动清洗、电信号转换为一体的工业在线分析仪表,它是由锑电极与参考电极组成的PH值测量系统。在被测酸性溶液中,由于锑电极表面会生成三氧化二锑氧化层,这样在金属锑面与三氧化二锑之间会形成电位差。该电位差的大小取决于三所氧化二锑的浓度,该浓度与被测酸性溶液中氢离子的适度相对应。如果把锑、三氧化二锑和水溶液的适度都当作1,其电极电位就可用能斯特公式计算出来。

锑电极酸度变送器中的固体模块电路由两大部分组成。为了现场作用的安全起见,电源部分采用交流24V为二次仪表供电。这一电源除为清洗电机提供驱动电源外,还应通过电流转换单元转换成相应的直流电压,以供变送电路使用。第二部分是测量变送器电路,它把来自传感器的基准信号和PH酸度信号经放大后送给斜率调整和定位调整电路,以使信号内阻降低并可调节。将放大后的PH信号与温度被偿

信号进行迭加后再差进转换电路,最后输出与PH值相对应的4~20mA恒流电流信号给二次仪表以完成显示并控制PH值。

酸、碱、盐浓度变送器:

酸、碱、盐浓度变送器通过测量溶液电导值来确定浓度。它可以在线连续检测工业过程中酸、碱、盐在水溶液中的浓度含量。这种变送器主要应用于锅炉给水处理、化工溶液的配制以及环保等工业生产过程。

酸、碱、盐浓度变送器的工作原理是:在一定的范围内,酸碱溶液的浓度与其电导率的大小成比例。因而,只要测出溶液电导率的大小变可得知酸碱浓度的高低。当被测溶液流入专用电导池时,如果忽略电极极化和分布电容,则可以等效为一个纯电阻。在有恒压交变电流流过时,其输出电流与电导率成线性关系,而电导率又与溶液中酸、碱浓度成比例关系。因此只要测出溶液电流,便可算出酸、碱、盐的浓度。

酸、碱、盐浓度变送器主要由电导池、电子模块、显示表头和壳体组成。电子模块电路则由激励电源、电导池、电导放大器、相敏整流器、解调器、温度补偿、过载保护和电流转换等单元组成。

电导变送器:

它是通过测量溶液的电导值来间接测量离子浓度的流程仪表(一体化变送器),可在线连续检测工业过程中水溶液的电导率。

由于电解质溶液与金属导体一样的电的良导体,因此电流流过电解质溶液时必有电阻作用,且符合欧姆定律。但液体的电阻温度特性与金属导体相反,具有负向温度特性。为区别于金属导体,电解质溶液的导电能力用电导(电阻的倒数)或电导率(电阻率的倒数)来表示。当两个互相绝缘的电极组成电导池时,若在其中间放置待测溶液,并通以恒压交变电流,就形成了电流回路。如果将电压大小和电极尺寸固定,则回路电流与电导率就存在一定的函数关系。这样,测了待测溶液中流过的电流,就能测出待测溶液的电导率。

电导变送器的结构和电路与酸、碱、盐浓度变送器相同。

智能变送器:

智能式变送器是由传感器和微处理器(微机)相结构而成的。它充分利用了微处理器的运算和存储能力,可对传感器的数据进行处理,包括对测量信号的调理(如滤波、放大、A/D转换等)、数据显示、自动校正和自动补偿等。

微处理器是智能式变送器的核心。它不但可以对测量数据进行计算、存储和数据处理,还可以通过反馈回路对传感器进行调节,以使采集数据达到最佳。由于微处理器具有各种软件和硬件功能,因而它可以完成传统变送器难以完成的任务。所以智能式变送器降低了传感器的制造难度,并在很大程主上提高了传感器的性能。另外,智能式变送器还具有以下特点:

1、具有自动补偿能力,可通过软件对传感器的非线性、温漂、时漂等进行自动补偿;

2、可自诊断,通电后可对传感器进行自检,以检查传感器各部分是否正常,并作出判断;

3、数据处理方便准确,可根据内部程序自动处理数据,如进行统计处理、去除异常数值等;

4、具有双向通信功能。微处理器不但可以接收和处理传感器数据,还可将信息反馈至传感器,从而对测量过程进行调节和控制;

5、可进行信息存储和记忆,能存储传感器的特征数据、组态信息和补偿特性等;

6、具有数字量接口输出功能,可将输出的数字信号方便地和计算机或现场总线等连接。

两线制变送器:

两线制是指现场变送器与控制室仪表联系仅用两根导线,这两根线既是电源线,又是信号线。

两线制与三线制(一根正电源线,两根信号线,其中一根共GND) 和四线制(两根正负电源线,两根信号线,其中一根共GND)相比,测量精度较低。

热电阻是把温度变化转换为电阻值变化的一次元件,通常需要把电阻信号通过引线传递到计算机控制装置或者其它一次仪表上。工业用热电阻安装在生产现场,与控制室之间存在一定的距离,因此热电阻的引线对测量结果会有较大的影响。

线制的分类:

二线制:在热电阻的两端各连接一根导线来引出电阻信号的方式叫二线制:这种引线方法很简单,但由于连接导线必然存在引线电阻r,r大小与导线的材质和长度的因素有关,因此这种引线方式只适用于测量精度较低的场合;

三线制:在热电阻的根部的一端连接一根引线,另一端连接两根引线的方式称为三线制,这种方式通常与电桥配套使用,可以较好的消除引线电阻的影响,是工业过程控制中的最常用的;

四线制:在热电阻的根部两端各连接两根导线的方式称为四线制,其中两根引线为热电阻提供恒定电流I,把R转换成电压信号U,再通过另两根引线把U引至二次仪表。可见这种引线方式可完全消除引线的电阻影响,主要用于高精度的温度检测。

热电阻采用三线制接法。采用三线制是为了消除连接导线电阻引起的测量误差。这是因为测量热电阻的电路一般是不平衡电桥。热电阻作为电桥的一个桥臂电阻,其连接导线(从热电阻到中控室)也成为桥臂电阻的一部分,这一部分电阻是未知的

且随环境温度变化,造成测量误差。采用三线制,将导线一根接到电桥的电源端,其余两根分别接到热电阻所在的桥臂及与其相邻的桥臂上,这样消除了导线线路电阻带来的测量误差。

两线制优点:

1、不易受寄生热电偶和沿电线电阻压降和温漂的影响,可用非常便宜的更细的导线;可节省大量电缆线和安装费用;

2、在电流源输出电阻足够大时,经磁场耦合感应到导线环路内的电压,不会产生显著影响,因为干扰源引起的电流极小,一般利用双绞线就能降低干扰;三线制与四线制必须用屏蔽线,屏蔽线的屏蔽层要妥善接地。

3、电容性干扰会导致接收器电阻有关误差,对于4~20mA两线制环路,接收器电阻通常为250Ω(取样Uout=1~5V)这个电阻小到不足以产生显著误差,因此,可以允许的电线长度比电压遥测系统更长更远;

4、各个单台示读装置或记录装置可以在电线长度不等的不同通道间进行换接,不因电线长度的不等而造成精度的差异,实现分散采集,分散式采集的好处就是:分散采集,集中控制

5、将4mA用于零电平,使判断开路与短路或传感器损坏(0mA状态)十分方便。

6、在两线输出口非常容易增设一两只防雷防浪涌器件,有利于安全防雷防爆。

三线制和四线制变送器均不具上述优点即将被两线制变送器所取代,从国外的行业动态及变送器芯片供求量即可略知一斑,电流变送器在使用时要安装在现场设备的动力线上,而以单片机为核心的监测系统则位于较远离设备现场的监控室里,两者一般相距几十到几百米甚至更远。设备现场的环境较为恶劣,强电信号会产生各种电磁干扰,雷电感应会产生强浪涌脉冲,在这种情况下,单片机应用系统中遇到的一个棘手问题就是如何在恶劣环境下远距离可靠地传送微小信号。

两线制电流变送器的输出为4~20mA,通过250Ω的精密电阻转换成1~5V或2-10V的模拟电压信号转换成数字信号有多种方法,如果系统是在环境较为恶劣的工业现场长期使用,因此需考虑硬件系统工作的安全性和可靠性。系统的输入模块采用压频转换器件LM231将模拟电压信号转换成频率信号,用光电耦合器件TL117进行模拟量与数字量的隔离。

同时模拟信号处理电路与数字信号处理电路分别使用两组独立的电源,模拟地与数字地相互分开,这样可提高系统工作的安全性。利用压频转换器件LM231也有一定的抗高频干扰的作用。

在单片机控制的许多应用场合,都要使用变送器来将单片机不能直接测量的信号转换成单片机可以处理的电模拟信号,如电流变送器、压力变送器、温度变送器、流量变送器等。

早期的变送器大多为电压输出型,即将测量信号转换为0-5V电压输出,这是运放直接输出,信号功率<005W,通过模拟/数字转换电路转换数字信号供单片机读取、控制。但在信号需要远距离传输或使用环境中电网干扰较大的场合,电压输出型传感器的使用受到了极大限制,暴露了抗干扰能力较差,线路损耗破坏了精度等等等缺点,而两线制电流输出型变送器以其具有极高的抗干扰能力得到了广泛应用。

电压输出型变送器抗干扰能力极差,线路损耗的破坏,谈不上精度有多高,有时输出的直流电压上还叠加有交流成分,使单片机产生误判断,控制出现错误,严重时还会损坏设备,输出0-5V绝对不能远传,远传后线路压降大,精确度大打折扣,很多的ADC,PLC,DCS的输入信号端口都作成两线制电流输出型变送器4-20mA的,证明了电压输出型变送器被淘汰的必然趋势。

以上就是关于传感器与变送器的区别是什么全部的内容,包括:传感器与变送器的区别是什么、压力变送器分几种类型、压力变送器使用方式和注意事项等相关内容解答,如果想了解更多相关内容,可以关注我们,你们的支持是我们更新的动力!

转载请注明原文地址:https://juke.outofmemory.cn/read/3634286.html

最新回复(0)