重心:三中线的交点
垂心:三高的交点
内心:三内角平分线的交点,是三角形的内切圆的圆心的简称
外心:三中垂线的交点
旁心:一条内角平分线与其它二外角平分线的交点.(共有三个.)是三角形的旁切圆的圆心的简称.
当且仅当三角形是正三角形的时候,四心合一心,称做正三角形的中心.
三角形的中心是正三角形重心、垂心、内心、外心四心合一心。
只有正三角形才有中心,一般三角形没有。仅当三角形是正三角形的时候,重心、垂心、内心、外心四心合一心,称做正三角形的中心。也可以说正三角形的中心是三条高的交点,是三条中线的交点,是三条角平分线的交点,是三边垂直平分线的交点。
三角形中心的性质
三角形中心点等于到各顶点的距离等于一条高的2/3。三角形重心是三角形三条中线的交点。当几何体为匀质物体时,重心与形心重合。当几何体为匀质物体时,重心与该形中心重合。三角形的中线是接三角形顶点和它的对边中点的线段。每个三角形都有三条中线,它们都在三角形的内部。
三角形的中心:仅当三角形是正三角形的时候,重心、垂心、内心、外心四心合一心,这个心是三角形的中心。三角形重心:三角形三条中线的交点即为三角形重心。
性质:
1、重心到顶点的距离与重心到对边中点的距离之比为2:1。
2、重心和三角形3个顶点组成的3个三角形面积相等。
3、重心到三角形3个顶点距离平方的和最小。 (等边三角形)
4、在平面直角坐标系中,重心的坐标是顶点坐标的算术平均数.
5、三角形内到三边距离之积最大的点。
6、在△ABC中,若MA向量+MB向量+MC向量=0(向量) ,则M点为△ABC的重心,反之也成立。
7、设△ABC重心为G点,所在平面有一点O,则向量OG=1/3(向量OA+向量OB+向量OC)。
向左转|向右转
拓展资料
三角形是由同一平面内不在同一直线上的三条线段‘首尾’顺次连接所组成的封闭图形,在数学、建筑学有应用。
常见的三角形按边分有普通三角形(三条边都不相等),等腰三角(腰与底不等的等腰三角形、腰与底相等的等腰三角形即等边三角形);按角分有直角三角形、锐角三角形、钝角三角形等,其中锐角三角形和钝角三角形统称斜三角形。