正弦二倍角公式:
sin2α = 2cosαsinα
推导:
sin2A=sin(A+A)=sinAcosA+cosAsinA=2sinAcosA
余弦二倍角公式:
余弦二倍角公式有三组表示形式,三组形式等价:
1、cos2α = 2(cosα)^2 − 1
2、cos2α = 1 − 2(sinα)^2
3、cos2α = (cosα)^2 − (sinα)^2
推导:
cos2A=cos(A+A)=cosAcosA-sinAsinA=(cosA)^2-(sinA)^2=2(cosA)^2-1=1-2(sinA)^2
正切二倍角公式:
tan2α=2tanα/[1-(tanα)^2]
推导:
tan2A=tan(A+A)=(tanA+tanA)/(1-tanAtanA)=2tanA/[1-(tanA)^2]
二倍角公式的运用二倍角公式通过角α的三角函数值的一些变换关系来表示其二倍角2α的三角函数值,二倍角公式包括正弦二倍角公式、余弦二倍角公式以及正切二倍角公式。
在计算中可以用来化简计算式、减少求三角函数的次数,在工程中也有广泛的运用。
二倍角公式是数学三角函数中常用的一组公式,下面就和我一起了解一下吧,供大家参考。
三角函数的二倍角公式是什么
二倍角公式:
正弦:sin2A=2sinA·cosA
余弦:1.Cos2a=Cos^2(a)-Sin^2(a)
2.Cos2a=1-2Sin^2(a)
3.Cos2a=2Cos^2(a)-1
即Cos2a=Cos^2(a)-Sin^2(a)=2Cos^2(a)-1=1-2Sin^2(a)
正切:tan2A=(2tanA)/(1-tan^2(A))
二倍角公式推导过程在二角和的公式中令两个角相等(B=A),就得到二倍角公式。
sin(A+B)=sinAcosB+cosAsinB--->sin2A=2sinAcosA
cos(A+B)=cosAcosB-sinAsinB--->cos2A=(cosA)^2-(sinA)^2=(1-(sinA)^2-(sinA)^2=1-2(sinA)^2=2(cosA)^2-1.
tan(A+B)=(tanA+tanB)/(1-tanAtanB)--->tan2A=2tanA/[1-(tanA)^2]
在余弦的二倍角公式中,解方程就得到半角公式。
cosx=1-2[sin(x/2)]^2--->sin(x/2)=+'-√[(1-cosx)/2]符号由(x/2)的象限决定,下同.
cosx=2[cos(x/2)]^2--->cos(x/2)=+'-√[1+cosx)/2]
两式的的两边分别相除,得到tan(x/2)=+'-√[(1-cosx)/(1+cosx)].
又tan(x/2)=sin(x/2)/cos(x/2)
=2[sin(x/2)]^2/[2sin(x/2)cos(x/2)]
=(1-cosx)/sinx
=sinx/(1+cosx).
还有哪些三角函数公式倍角公式
1、Sin2A=2SinA*CosA
2、Cos2A=CosA^2-SinA^2=1-2SinA^2=2CosA^2-1
3、tan2A=(2tanA)/(1-tanA^2)(注:SinA^2是sinA的平方sin2(A)
锐角三角函数公式
1、sinα=∠α的对边/斜边
2、α=∠α的邻边/斜边
3、tanα=∠α的对边/∠α的邻边
4、cotα=∠α的邻边/∠α的对边
半角公式
sin(a/2)=√((1-cosa)/2)sin(a/2)=-√((1-cosa)/2)
cos(a/2)=√((1+cosa)/2)cos(a/2)=-√((1+cosa)/2)
tan(a/2)=√((1-cosa)/((1+cosa))tan(a/2)=-√((1-cosa)/((1+cosa))
cot(a/2)=√((1+cosa)/((1-cosa))cot(a/2)=-√((1+cosa)/((1-cosa))
tan(a/2)=(1-cosa)/sina=sina/(1+cosa)
二倍角公式:sin2α=2sinαcosα
tan2α=2tanα/(1-tan^2(α))
cos2α=cos^2(α)-sin^2(α)=2cos^2(α)-1=1-2sin^2(α)
半角公式:
sin^2(α/2)=(1-cosα)/2
cos^2(α/2)=(1+cosα)/2
tan^2(α/2)=(1-cosα)/(1+cosα)
tan(α/2)=sinα/(1+cosα)=(1-cosα)/sinα
倍角公式和半角公式都是三角函数中非常实用的一类公式。就是把二倍角的三角函数用本角的三角函数表示出来。在计算中可以用来化简计算式、减少求三角函数的次数,在工程中也有广泛的运用。