平方根,又叫二次方根,表示为〔±√ ̄〕。我为大家带来了平方根的概念,大家赶快跟随我一起来了解一下吧。
平方根概念
平方根,又叫二次方根,表示为〔±√ ̄〕,其中属于非负数的平方根称之为算术平方根。一个正数有两个实平方根,它们互为相反数,负数没有平方根,0的平方根是0。
负数在实数系内不能开平方。只有在复数系内,负数才可以开平方。负数的平方根为一对共轭纯虚数。
平方根列表√1=1
√2=1.4142135623731
√3=1.73205080756888
√4=2
√5=2.23606797749979
√6=2.44948974278318
√7=2.64575131106459
√8=2.82842712474619
√9=3
√10=3.16227766016838
算术平方根是什么若一个正数x的平方等于a,即x^2=a,则这个正数x为a的算术平方根。a的算术平方根记作√ ̄a,读作“根号a”,a叫做被开方数。规定:0的算术平方根为0。
算术平方根和平方根是大家学习实数接触最多的概念,两者密不可分。可对于初学者来说是对“孪生杀手”,很容易在解题过程中产生错误。
以上内容就是我为大家找来的相关内容,希望可以帮助到大家。
平方根又叫二次方根,数学上指一数自乘,刚好等于某数,则此数即为某数的平方根,也就是将某数开平方所得的数。
一个正数如果有平方根,那么必定有两个,它们互为相反数。显然,如果知道了这两个平方根的一个,那么就可以及时的根据相反数的概念得到它的另一个平方根。负数在实数系内不能开平方。只有在复数系内,负数才可以开平方。负数的平方根为一对共轭纯虚数。
平方根
本节重点是平方根和算术平方根的概念。平方根是开方运算的基础,是引入无理数的准备知识。平方根概念的正确理解有助于符号表示的理解,是正确求平方根运算的前提,并且直接影响到二次根式的学习。算术根的教学不但是本章教学的重点,也是今后数学学习的重点。
本节难点是平方根与算术平方根的区别与联系。首先这两个概念容易混淆,而且各自的符号表示意义学生不是很容易区分,教学中要抓住算术平方根式平方根中正的那个,讲清各自符号的意义,区分两种表示的不同。
以上内容参考:百度百科——平方根
平方根公式:x=√a。
结论:被开方数越大,对应的算术平方根也越大(对所有正数都成立)。
一个正数如果有平方根,那么必定有两个,它们互为相反数,显然,如果知道了这两个平方根的一个,那么就可以及时的根据相反数的概念得到它的另一个平方根。
算数平方根和平方根的联系:
1、前提条件相同:算术平方根和平方根存在的前提条件都是“只有非负数才有算术平方根和平方根”。
2、存在包容关系:平方根包含了算术平方根,因为一个正数的算术平方根只是其两个平方根中的一个。
3、0的算术平方根和平方根相同,都是0。