1、性质的内容:
(1)梯形的中位线平行于两底,并且等于两底和的一半 。
(2)梯形中位线的2倍乘高再除以二就等于梯形的面积,用符号表示是L。
l=(a+b)÷2
2、性质二的应用:
已知中位线长度和高,就能求出 梯形的面积=lh
即中位线在关于梯形的各种题型中都是一条得天独厚的辅助线。
3、扩展:
三角形三条中位线所构成的三角形与原三角形相似。
扩展资料:
1、梯形中位线的相关公式:
(1)面积公式:梯形中位线×高=(上底+下底)×高÷2=梯形面积 [3]
(2)梯形中位线到上下底的距离相等
(3)中位线长度=(上底+下底)÷2
2、梯形中位线与三角形中位线作对比:
3、相关误区:
(1)梯形的中位线是连结两腰中点的线段而不是连结两底中点的线段。
(2)三角形中位线有三条,而梯形中位线只有1条。
4、相关应用:
如果我们指定(定义):四边形一组对边为腰,另一组对边为底,两腰中点连线称为四边形的中位线。
于是有命题:“如果四边形的中位线等于两底和的一半,那么这个四边形是梯形”成立。
这一命题被称为梯形的判定定理。
参考资料来源:百度百科 - 梯形中位线
参考资料来源:百度百科 - 梯形中位线定理
参考资料来源:百度百科 - 中位线
梯形中位线的公式:面积公式:梯形中位线×高=(上底+下底)×高÷2=梯形面积;梯形中位线到上下底的距离相等;中位线长度=(上底+下底)÷2。连接梯形两腰中点的线段叫做梯形的中位线,梯形的中位线平行于两底,并且等于两底和的一半。三角形可看成上底为零的梯形。您好!
梯形中位线定义:
连结梯形两腰中点的线段叫做梯形的中位线.梯形的中位线平行于两底,并且等于两底和的一半。
注意:梯形的中位线是连结两腰中点的线段而不是连结两底中点的线段。