参数是参变数的简称。它是研究运动等一类问题中产生的。质点运动时,它的位置必然与时间有关系,也就是说,质的坐标x,y与时间t之间有函数关系x=f(t),y=g(t),这两个函数式中的变量t,相对于表示质点的几何位置的变量x,y来说,就是一个“参与的变量”。这类实际问题中的参变量,被抽象到数学中,就成了参数。我们所学的参数方程中的参数,其任务在于沟通变量x,y及一些常量之间的联系,为研究曲线的形状和性质提供方便。用参数方程描述运动规律时,常常比用普通方程更为直接简便。对于解决求最大射程、最大高度、飞行时间或轨迹等一系列问题都比较理想。有些重要但较复杂的曲线(例如圆的渐开线),建立它们的普通方程比较困难,甚至不可能,列出的方程既复杂又不易理解。根据方程画出曲线十分费时;而利用参数方程把两个变量x,y间接地联系起来,常常比较容易,方程简单明确,且画图也不太困难。
参数是一个变量。
参数,也叫参变量,是一个变量。我们在研究当前问题的时候,关心某几个变量的变化以及它们之间的相互关系,其中有一个或一些叫自变量,另一个或另一些叫因变量。
如果引入一个或一些另外的变量来描述自变量与因变量的变化,引入的变量本来并不是当前问题必须研究的变量,我们把这样的变量叫做参变量或参数。
扩展资料:
参数思想贯彻于解析几何中。对于几何变量,人们用含有字母的代数式来表示变量,这个代数式叫作参数式,其中的字母叫做参数。
用图形几何性质与代数关系来连立整式,进而解题。同时“参数法 ”也是许许多多解题技巧的源泉。
在给定的平面直角坐标系中,如果曲线上任意一点的坐标x,y都是某个变数t的函数x=f(t),y=φ(t),⑴且对于t的每一个允许值,由方程组⑴所确定的点m(x,y)都在这条曲线上,那么方程组⑴称为这条曲线的参数方程。
参考资料来源:百度百科—参数