sina等于三角函数直三角公式:sinA=cosB。
正弦(sin)等于对边比斜边;sinA=a/c 。
余弦(cos)等于邻边比斜边;cosA=b/c 。
正切(tan)等于对边比邻边;tanA=a/b 。
余切(cot)等于邻边比对边;cotA=b/a。
正弦定理
特定正弦函数与椭圆的关系,关于椭圆的周长等于特定的正弦曲线在一个周期内的长度的证明:
半径为r的圆柱上与一斜平面相交得到一椭圆,该斜平面与水平面的夹角为α,截取一个过椭圆短径的圆。
以该圆和椭圆的某一交点为起始转过一个θ角。则椭圆上的点与圆上垂直对应的点的高度可以得到。
sina等于三角函数直三角公式
sinA=cosB;
正弦(sin)等于对边比斜边;sinA=a/c ;
余弦(cos)等于邻边比斜边;cosA=b/c ;
正切(tan)等于对边比邻边;tanA=a/b ;
余切(cot)等于邻边比对边;cotA=b/a。
扩展资料
古代说的“勾三股四弦五”中的“弦”,就是直角三角形中的斜边,“勾”、“股”是直角三角形的两条直角边。
正弦是股与弦的比例,余弦是余下的那条直角边与弦的比例。
正弦=股长/弦长勾股弦放到圆里。弦是圆周上两点连线。最大的弦是直径。 把直角三角形的弦放在直径上,股就是∠A所对的弦,即正弦,勾就是余下的弦——余弦。
按现代说法,正弦是直角三角形的对边与斜边之比。
现代正弦公式是sin = 直角三角形的对边比斜边.
如图1,斜边为r,对边为y,邻边为a。斜边r与邻边a夹角Ar的正弦sinA=y/r无论a,y,r为何值,正弦值恒大于等于0小于等于1,即0≤sin≤1.
sina等于三角函数直三角公式sinA=cosB。
正弦(sin)等于对边比斜边;sinA=a/c 。
余弦(cos)等于邻边比斜边;cosA=b/c。
正切(tan)等于对边比邻边;tanA=a/b。
余切(cot)等于邻边比对边;cotA=b/a。
积化和差公式:
sinα·cosβ=(1/2)[sin(α+β)+sin(α-β)]
cosα·sinβ=(1/2)[sin(α+β)-sin(α-β)]
cosα·cosβ=(1/2)[cos(α+β)+cos(α-β)]
sinα·sinβ=-(1/2)[cos(α+β)-cos(α-β)]
和差化积公式:
sinα+sinβ=2sin[(α+β)/2]cos[(α-β)/2]
sinα-sinβ=2cos[(α+β)/2]sin[(α-β)/2]
cosα+cosβ=2cos[(α+β)/2]cos[(α-β)/2]
cosα-cosβ=-2sin[(α+β)/2]sin[(α-β)/2]