底数为10时简写lg, log10= lg
底数为e时简写为ln, logeX=lnX
扩展资料:
log对对数,数学中,对数是对求幂的逆运算,正如除法是乘法的倒数,反之亦然。 这意味着一个数字的对数是必须产生另一个固定数字(基数)的指数。 在简单的情况下,乘数中的对数计数因子。更一般来说,乘幂允许将任何正实数提高到任何实际功率,总是产生正的结果,因此可以对于b不等于1的任何两个正实数b和x计算对数。
如果a的x次方等于N(a>0,且a≠1),那么数x叫做以a为底N的对数(logarithm),记作x=log_a N。其中,a叫做对数的底数,N叫做真数。
ln对自然对数,自然对数是以常数e为底数的对数,记lnN(N>0)。在物理学,生物学等自然科学中有重要的意义,一般表示方法为lnx。数学中也常见以logx表示自然对数。常数e的含义是单位时间内,持续的翻倍增长所能达到的极限值。
自然对数的底e是由一个重要极限给出的。我们定义:当n趋于无穷大时, .
e是一个无限不循环小数,其值约等于2.718281828459…,它是一个超越数。
ln和log的关系是它们可以相互转换,都是表示对数的数学符号。ln是自然对数,是以e为底的对数。log是常用并且以10为底的对数,也是一般的对数,能以任何大于0且不等于1的数为底。log和ln的转换公式:logN=lnN/ln10、lnN=logN/loge。
ln是自然对数,自然对数是以常数e为底数的对数,常被记作lnN(N>0)。在生物学与物理学等自然科学中有着重要的意义,一般表示方法为lnx。当x趋于无限时,lim(1+1/x)^x=e。
e是一个无限不循环小数,其值约等于2.718281828…,它是一个超越数。log的缩写是logarithms,一般默认以10为底数,若a=b(a>0且a≠1)则n=logab若a^n=b(a>0且a≠1)则n=log(a^b)。
log和ln都是表示对数的数学符号,它们相互之间可以转换,log的基本公式有:
1、a=b a^{log(a^b)}=b
2、loga(MN)=logaM+logaN log{a^(MN)}=log(a^M)+log(a^N)
3、loga(M÷N)=logaM-logaN log{a^(M/N)}=log(a^M)-log(a^N)
4、loga(M)=nlogaM log{a^(M^n)}=nlog(a^M)
5、log(a)(M)=1/nlogaM log{(a^n)^M}=1/nlog(a^M)
ln的基本公式:ln(MN)=lnM +lnN、ln(M/N)=lnM-lnN、ln(M^n)=nlnM ln1=0 lne=1。In和log是可以互相转换的,公式为:logN=lnN/ln10、lnN=logN/loge。