幂的运算性质
(1)同底数幂相乘,底数不变,指数相加,
(2)幂的乘方,底数不变,指数相乘,
(3)积的乘方,等于每个因式分别乘方,即
(4)同底数幂相除,底数不变,指数相减, (a≠0)
(5)零指数和负指数:规定 , (其中a≠0,p为正整数)
(其中,m、n均为整数)
同底数幂的乘法:底数不变,指数相加幂的乘方;同底数幂的除法:底数不变,指数相减幂的乘方;幂的指数乘方:等于各因数分别乘方的积商的乘方;分式乘方:分子分母分别乘方,指数不变。
幂的大小比较方法
计算比较法
先通过幂的计算,然后根据结果的大小,来进行比较的。
底数比较法
在指数相同的情况下,通过比较底数的大小,来确定两个幂的大小。
指数比较法
在底数相同的情况下,通过比较指数的大小,来确定两个幂的大小。
求差比较法
将两个幂相减,根据其差与0的比较情况,来确定两个幂的大小。
求商比较法
将两个幂相除,然后通过商与1的大小关系,比较两个幂的大小。
乘方比较法
将两个幂乘方后化为同指数幂,通过进行比较结果,来确定两个幂的大小。
定值比较法
通过选一个与两个幂中一个幂相接近的幂作定值,然后用两个幂与所选取的定值相比较,由此来确定两个幂的大小。