置信度也称为可靠度,或置信水平、置信系数,即在抽样对总体参数作出估计时,由于样本的随机性,其结论总是不确定的。因此,采用一种概率的陈述方法,也就是数理统计中的区间估计法,即估计值与总体参数在一定允许的误差范围以内,其相应的概率有多大,这个相应的概率称作置信度。
置信水平是描述GIS中线元素与面元素的位置不确定性的重要指标之一。置信水平表示区间估计的把握程度,置信区间的跨度是置信水平的正函数,即要求的把握程度越大,势必得到一个较宽的置信区间,这就相应降低了估计的准确程度。
扩展资料:
置信区间只在频率统计中使用。在贝叶斯统计中的对应概念是可信区间。但是可信区间和置信区间是建立在不同的概念基础上的,因此一般上说取值不会一样。 置信空间表示通过计算估计值所在的区间。 置信水平表示准确值落在这个区间的概率。
置信区间表示具体值范围,置信水平是个概率值。例如:估计某件事件完成会在10~12日之间,但这个估计准确性大约只有80%:表示置信区间(10,12),置信水平80%。要想提高置信水平,就要放宽置信空间。
置信水平是指总体参数值落在样本统计值某一区内的概率;而置信区间是指在某一置信水平下,样本统计值与总体参数值间误差范围。置信区间越大,置信水平越高。
参考资料来源:百度百科-置信水平
不会内容就这么少吧?转个帖子过来=========================================================首先我们要弄清楚两个概念,置信度和置信区间置信度:以测量值为中心,在一定范围内,真值出现在该范围内的几率。一般设定在2σ,也就是95%,95%是通常情况下置信度(置信水平)的设定值。置信区间:在某一置信度下,以测量值为中心,真值出现的范围。我们在论文里经常看到CI,CI是置信区间,一定概率下真值得取值范围(可靠范围)称为置信区间。其概率称为置信概率或置信度(置信水平)真实数据往往是实际上不能获知的,我们只能进行估计,估计的结果是给出一对数据,比如从1到1.5,真实的值落在1到1.5之间的可能性是95%(也有5%的可能性在这区间之外的)。区间是由抽样的数据根据大样定律结合查表得来的。区间越小精度越高,区间越大置信度越高。打个比方,我们猜张燕燕的年龄,你给出区间是25-35,这个区间很小置信度很低但精度就很高,你说在8岁到80岁之间,那是百分百的置信度了不过精度太低毫无意义。的确99%准确度高于95%,但是它的精度(精密度)就低于95%。95%的置信度是一般通用的。P值指的是比较的两者的差别是由机遇所致的可能性大小。P值越小,越有理由认为对比事物间存在差异。例如,P0.05称“不显著”;P<=0.05称“显著”,P<=0.01称“非常显著”。由于常用“显著”来表示P值大小,所以P值最常见的误用是把统计学上的显著与临床或实际中的显著差异相混淆,即混淆“差异具有显著性”和“具有显著差异”二者的意思。其实,前者指的是p<=0.05,即说明有充分的理由认为比较的二者来自同一总体的可能性不足5%,因而认为二者确实有差异,下这个结论出错的可能性<=5%。而后者的意思是二者的差别确实很大。举例来说,4和40的差别很大,因而可以说是“有显著差异”,而4和4.2差别不大,但如果计算得到的P值<=0.05,则认为二者“差别有显著性”,但是不能说“有显著差异”。===================================================