自然数是以计量事物的件数的数、以表示事物次序的数。自然数包括正整数和零。
数学中的自然数是指表示物体个体的书,就是从0开始,0、1、2、3、4.......这样一个接一个,组成一个无穷的集体,就是平时说的非负整数。
表示物体个数的数就叫做自然数,自然数有有序性,无限性,还分为奇数和偶数,合数和质数等等。
整数和自然数的区别:
自然数是整数,自然数包括正整数和零,但整数不全是自然数,例如:-1 -2 -3......是整数而不是自然数,自然数是无限的。
自然数集N是指满足以下条件的集合:
①N中有一个元素,记作1。
②N中每一个元素都能在N中找到一个元素作为它的后继者。
③1是0的后继者。
④0不是任何元素的后继者。
⑤不同元素有不同的后继者。
⑥N的任一子集M,如果1∈M,并且只要x在M中就能推出x的后继者也在M中,那么M=N。
以上内容参考:百度百科-自然数
01自然数包括正整数和零。自然数是整数,但整数不全是自然数,例如:-1 -2 -3……是整数,而不是自然数。自然数是无限的。
02自然数是一切等价有限集合共同特征的标记。注:整数包括自然数,所以自然数一定是整数,且一定是非负整数。自然数是整数(自然数包括正整数和零),但整数不全是自然数,例如:-1 -2 -3……是整数 而不是自然数。自然数是无限的。
03自然数用以计量事物的件数或表示事物次序的数 。 即用数码0,1,2,3,4,……所表示的数 。自然数由0开始 , 一个接一个,组成一个无穷集合。自然数集有加法和乘法运算,两个自然数相加或相乘的结果仍为自然数,也可以作减法或除法,但相减和相除的结果未必都是自然数,所以减法和除法运算在自然数集中并不是总能成立的。自然数是人们认识的所有数中最基本的一类,为了使数的系统有严密的逻辑基础,19世纪的数学家建立了自然数的两种等价的理论枣自然数的序数理论和基数理论,使自然数的概念、运算和有关性质得到严格的论述。
04自然数集N是指满足以下条件的集合:①N中有一个元素,记作1。②N中每一个元素都能在 N 中找到一个元素作为它的后继者。③ 1不是任何元素的后继者。④ 不同元素有不同的后继者。⑤(归纳公理)N的任一子集M,如果1∈M,并且只要x在M中就能推出x的后继者也在M中,那么M=N。