两点分布的条件如下:两点分布( two-point distribution)即“伯努利分布”。在一次试验中,事件A出现的概率为P,事件A不出现的概率为q=l -p,若以X记一次试验中A出现的次数,则X仅取0、I两个值。X的概率分布为P(X=七)=pkql¨,k=0,l,称X服从伯努利分布。因为X常常取0、1两个值,所以两点分布又被称之为0-1分布。
伯努利分布(the Bernoulli distribution)是一个离散型机率分布,为纪念瑞士科学家詹姆斯·伯努利(Jacob Bernoulli 或James Bernoulli)而命名.当伯努利试验成功,令伯努利随机变量为1.若伯努利试验失败,令伯努利随机变量为0.其成功机率为p,失败机率为q =1-p,在N次试验后,其成功期望E(X)为p,方差D(X)为p(1-P) .伯努利分布又称两点分布.
一、性质不同
1、两点分布:在一次试验中,事件A出现的概率为P,事件A不出现的概率为q=l -p,若以X记一次试验中A出现的次数,则X仅取0、I两个值。
2、二项分布:是重复n次独立的伯努利试验。在每次试验中只有两种可能的结果,而且两种结果发生与否互相对立,并且相互独立,与其它各次试验结果无关,事件发生与否的概率在每一次独立试验中都保持不变。
二、特点不同
1、两点分布:是试验次数为1的伯努利试验。
2、二项分布:是试验次数为n次的伯努利试验。
扩展资料:
二项分布的图形特点:
(1)当(n+1)p不为整数时,二项概率P{X=k}在k=[(n+1)p]时达到最大值;
(2)当(n+1)p为整数时,二项概率P{X=k}在k=(n+1)p和k=(n+1)p-1时达到最大值。
二项分布的应用条件:
1、各观察单位只能具有相互对立的一种结果,如阳性或阴性,生存或死亡等,属于两分类资料。
2、已知发生某一结果(阳性)的概率为π,其对立结果的概率为1-π,实际工作中要求π是从大量观察中获得比较稳定的数值。
参考资料来源:百度百科-两点分布
参考资料来源:百度百科-二项分布