点法式方程是平面π上任意一点的坐标都满足这个方程。而坐标满足方程的点都在π上。于是这个方程就是过点且与向量垂直的平面π的方程,称为平面的点法式方程。
一张平面π可以由π上任意一点和垂直于π的任意一个向量完全确定。垂直于π的任意向量称为π的法向量。
简介
法向量是与这个平面所有向量垂直的向量,那么要求法向量就相当简单,我们只需要取这个平面上的两个向量a,b,由于垂直向量点乘为0,我们可以列出方程组,an=0,bn=0。
两个式子就可以解出法向量n=(p,q,t)然后我们知道一个点A(l,o,c)根据点法式的原形得出平面方程p(x-l)+q(y-o)+t(z-c)=0。
点法式方程是:过点且与向量垂直的平面。
平面π上任意一点的坐标都满足这个方程。而坐标满足方程的点都在π上。于是这个方程就是过点且与向量垂直的平面π的方程,称为平面的点法式方程。
1、点法式是通过平面的一个法向量和平面的一个点,来确定一个平面的法向量是与这个平面,所有向量垂直的向量。
2、法向量,如果一个非零向量n与平面a垂直,则称向量n为平面a的法向量。
3、法向量,是空间解析几何的一个概念,垂直于平面的直线所表示的向量为该平面的法向量。法向量适用于解析几何。由于空间内有无数个直线垂直于已知平面,因此一个平面都存在无数个法向量。